Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (5): 355-364    DOI: 10.11901/1005.3093.2015.312
  本期目录 | 过刊浏览 |
SiC纤维增强钛基复合材料残余应力的数值模拟
张志超1, 王玉敏2(), 李玉芳1, 柏春光2
1. 南京航空航天大学材料科学与技术学院 南京 210016
2. 中国科学院金属研究所 沈阳 110016
Numerical Simulation on Residual Stress of SiC Fiber Reinforced Titanium Matrix Composite
ZHANG Zhichao1, WANG Yumin2,*(), LI Yufang1, BAI Chunguang2
1.College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张志超, 王玉敏, 李玉芳, 柏春光. SiC纤维增强钛基复合材料残余应力的数值模拟[J]. 材料研究学报, 2016, 30(5): 355-364.
Zhichao ZHANG, Yumin WANG, Yufang LI, Chunguang BAI. Numerical Simulation on Residual Stress of SiC Fiber Reinforced Titanium Matrix Composite[J]. Chinese Journal of Materials Research, 2016, 30(5): 355-364.

全文: PDF(1863 KB)   HTML
摘要: 

采用有限元模拟方法研究了SiC纤维和SiC/Ti-6Al-4V复合材料的制备过程, 用正交实验分析技术计算了不同参数对SiC纤维残余应力和复合材料致密度及残余应力的影响规律。结果表明, 对于SiC纤维的制备过程, 降低沉积温度和C涂层厚度则WC反应层中的轴向热应力降低。对于复合材料的热等静压过程, 热等静压温度和包套厚度对复合材料致密度的影响较大, 热等静压时间和纤维体积分数对致密度的影响较小, 随着热等静压温度的升高和包套厚度的降低复合材料的致密度提高; 适当提高热等静压温度和纤维体积分数、降低包套厚度能大大增大基体的径向残余应力和适当提高热等静压温度和包套厚度、降低热等静压时间, 能大大降低基体的环向残余应力。建议热等静压温度为950-960℃, 热等静压时间为9 h, 包套的厚度为70-80 mm, 纤维的体积分数为45%-50%。SiC纤维增强钛基复合材料残余应力模拟结果与用拉曼光谱法测试的数值有一定的不同, 但是其变化趋势相近。

关键词 钛基复合材料SiC纤维致密度残余应力有限元模拟    
Abstract

FEM calculation for the preparation process of SiC fiber and SiC/Ti-6Al-4V composite was carried out to investigate the effect of different processing parameters on the residual stress of the SiC fiber as well as the densification behavior and residual stress of the composite. The results show that, for the fabrication process of fibers, the axial thermal stress of the WC layer decreases with the decrease of deposition temperature and thickness of C layer. For the densification of composites, HIP temperature and sheath thickness have greater impact on the density, but HIP time and fiber volume fraction have smaller impact; with the increasing HIP temperature and decreasing sheath thickness, the density of the composite could be enhanced; the radial residual stress on the matrix greatly increases with the increase of HIP temperature and fiber volume fraction and decrease of sheath thickness appropriately; the hoop residual stress on the matrix greatly decreases with the increase of HIP temperature and sheath thickness, while decrease of HIP time appropriately. Finally the following processing parameters were recommended for preparation of SiC/Ti-6Al-4V composite with good quality: HIP temperature 950-960℃, HIP time 9 h and sheath thickness 70-80 mm and fiber volume fraction 45%-50%. FEM calculation results show some differences with those measured in the experiment for the residual stress of the composite, but with similar variation tendency.

Key wordstitanium matrix composite    SiC fiber    densification    residual stress    finite element simulation
收稿日期: 2015-05-28     
ZTFLH:  TB331  
作者简介: 本文联系人: 王玉敏
图1  SiC纤维轴对称有限元模型
Material properties W WC SiC C
Young's modulus E/GPa 411 379 400 110
CTE α/(10-6-1) 4.6 25℃ 3.84 4.0 0.5
900℃ 7
Poisson ratio ν 0.28 0.23 0.17 0.23
表1  材料性能参数[10]
图2  温度载荷
图3  热等静压有限元模型
图4  热等静压工艺参数
图5  热等静压模型变形图
Temperature/℃ 25 200 400 700 900
CTE α/(10-6-1) 3.53 3.62 3.87 4.36 4.59
Young's modulus E/GPa 400(all temp.)
Poisson ratio ν 0.5(all temp.)
Density ρ(kgm-3) 2550(all temp.)
Thermal conductivity
(kgmm/(sK))
0.49(all temp.)
Specific heat(mm2/(s2K)) 680000(all temp.)
表2  SiC纤维材料性能[11]
Temperature/℃ 23 200 400 600 800
CTE α/(10-6-1) 8.9 - - - 9.8
Young's modulus E/GPa 105.0 94.7 84.1 74.2 62.8
Yield stress σy/MPa 890.9 690.9 563.6 19.09 10.91
Shear modulus H/GPa 0.53 0.67 0.69 0.21 0.13
Thermal conductivity
(10-3kgmm/(sK))
6.6 9.1 12.6 17.5 -
Specific heat
(103mm2/(s2K))
565 574 649 770 959
Poisson ratio ν 0.34(all temp.)
Density ρ(kgm-3) 4440(all temp.)
表3  Ti-6Al-4V基体和包套材料性能[11]
Factor Deposition
temperature
WC layer
thickness
SiC layer
thickness
C layer
thickness
Average value1/MPa 798.929 986.001 993.842 967.442
Average value2/MPa 981.185 989.853 985.629 985.437
Average value3/MPa 1177.644 981.905 978.287 1004.879
Range 378.715 7.948 15.555 37.437
表4  正交实验的WC层平均轴向热应力
图6  沉积温度, WC层厚度, SiC层厚度以及C涂层厚度等SiC纤维参数对WC层轴向热应力的影响
Factor HIP temperature HIP time Can thickness Fiber volume fraction
Average value1 0.872 0.883 0.921 0.885
Average value2 0.878 0.893 0.888 0.883
Average value3 0.886 0.896 0.880 0.888
Average value4 0.897 0.889 0.878 0.894
Average value5 0.913 0.885 0.878 0.898
Range 0.041 0.013 0.043 0.015
表5  致密度正交实验结果表
图7  温度, 时间, 厚度以及纤维体积分数等热等静压参数对致密度的影响
图8  路径E的径向和环向残余应力分布曲线图
Factor HIP temperature HIP time Can thickness Fiber volume fraction
Average value1/MPa 98.165 102.415 160.275 75.131
Average value2/MPa 115.972 118.780 127.898 97.289
Average value3/MPa 122.139 133.557 116.792 125.420
Average value4/MPa 128.149 130.117 113.262 146.759
Average value5/MPa 155.747 135.303 101.945 175.574
Range 57.582 32.888 58.330 100.443
表6  F点径向残余应力正交实验结果表
图9  温度, 时间, 厚度以及纤维体积分数等等热等静压参数对径向残余应力的影响
Factor HIP temperature HIP time Can thickness Fiber volume fraction
Average value1/MPa 262.096 193.320 247.252 232.807
Average value2/MPa 244.531 225.072 244.391 233.402
Average value3/MPa 226.111 229.351 237.901 230.886
Average value4/MPa 224.497 244.647 233.652 224.659
Average value5/MPa 191.201 256.047 218.472 226.683
Range 70.895 62.727 28.780 8.743
表7  基体F点环向残余应力正交实验结果表
图10  温度, 时间, 厚度以及纤维体积分数等热等静压参数对环向残余应力的影响
图11  长径比不同的轴对称模型中间面轴向应力沿径向的分布曲线
图12  用激光拉曼法测量SiC残余应力沿径向的分布曲线
图13  SiC纤维中间段和端部的残余应力分布云图
1 Hooker J A, Doorbar P J, Metal matrix composites for aeroengines, Materials Science and Technology, 16, 725(2000)
2 YANG Rui, SHI Nanlin, WANG Yumin, LEI Jaifeng, ZHANG Guoxing, FU Yuechun, LI Yanhua, ZHANG Dezhi, Recent progress in SiC fibre reinforced titanium matrix composites, Titanium Industry Progress, 22, 32(2005)
2 (杨锐, 石南林, 王玉敏, 雷家峰, 张国兴, 符跃春, 李艳华, 张德志, SiC纤维增强钛基复合材料研究进展, 钛工业进展, 22, 32(2005))
3 Nimmer R P, Fiber-matrix interface effects in the presence of thermally induced residual stress, Journal of Composites Technology Research, 12(2), 65(1990)
4 Wisnom M R, Factors affecting the transverse tensile strength of unidirectional continuous silicon carbide fiber reinforced 6061 aluminum, Comput Mater, 24(7), 707(1990)
5 Aghdam M M, Kamalikhah A, Micromechanical analysis of layered systems of MMCs subjected to bending effects of thermal residual stresses, Composite Structures, 66(1), 563(2004)
6 Akser E O, Choy K L, Finite element analysis of the stress distribution in a thermally and transversely loaded Ti-6Al-4V/SiC fibre composite, Composites Part A: Applied Science and Manufacturing, 32(2), 243(2001)
7 MA Zhijun, YANG Yanqing, ZHU Yan, CHEN Yan, Effect of matrix material properties on thermal residual stresses of titanium matrix composites, Acta Metallurgica Sinica, 38, 488(2002)
7 (马志军, 杨延清, 朱艳, 陈彦, 基体材料性能对钛基复合材料热残余应力的影响, 金属学报, 38, 488(2002))
8 Figiel Ł, Günther B, Modelling the high-temperature longitudinal fatigue behaviour of metal matrix composites (SiC/Ti-6242): Nonlinear time-dependent matrix behaviour, International Journal of Fatigue, 30(2), 268(2008)
doi: 10.1016/j.ijfatigue.2007.01.056
9 Kishimoto H, Shibayama T, Shimoda K, et al.Microstructural and mechanical characterization of W/SiC bonding for structural material in fusion, Journal of Nuclear Materials, 417(1), 387(2011)
10 SHEN Wentao, YANG Yanqing, ZHANG Rongjun, Effect of W/SiC interfacial reaction layer on tensile and fracture behavior of SiC fibre, Rare Metal Materials & Engineering, 40(3), 491(2011)
10 (沈文涛, 杨延清, 张荣军, W/SiC界面反应层对SiC纤维拉伸断裂行为的影响, 稀有金属材料与工程, 40(3), 491(2011))
11 Akalin O, Ezirmik V K, Urgen M, Wear characteristics of NiTi/Al6061 short fiber metal matrix composite reinforced with SiC particulates, Journal of Tribology, 132(4), (2010)
12 LUO Xian, YANG Yanqing, WANG Chen, Research progress in interfacial modification of SiC fiber reinforced titanium matrix composites, Materials Review, 23(2011)
12 (罗贤, 杨延清, 王晨, SiC纤维增强钛基复合材料的界面改性研究现状, 材料导报, 23(2011))
13 Hernandez X, Jiménez C, Mergia K, SiC Composite to titanium Alloy, Journal of Materials Engineering & Performance, 23(8), 3069(2014)
14 Lacoste E, Arvieu C, Quenisset J M, Correlation between microstructures of SiC-reinforced titanium matrix composite and liquid route processing parameters, Journal of Materials Science, 50, 5583(2015)
15 Gussone J, Hausmann J, Gussone J, Electrolytic deposition of titanium on SiC-fibres as first step in titanium matrix composite production, International Round Table on Titanium Production in Molten Salts, September, 2010
16 ZHANG Xu, Study on interface reaction, residual stress and mechanical properties of SiCf/TC17 composite, PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences (2012)
16 (张旭, SiCf/TC17复合材料界面反应、残余应力及力学性能研究, 博士学位论文, 中国科学院金属研究所(2012))
17 WANG Yumin, XIAO Peng, SHI Nanlin, SiC fibre reinforced titanium matrix composite: interface evolution and component manufacturing, Materials China, 29(5), 9(2010)
17 (王玉敏, 肖鹏, 石南林, SiC纤维增强钛基复合材料界面研究及构件研制, 中国材料进展, 29(5), 9(2010))
18 ZHAO Bin, LIAO Jinhua, HOU Hongliang, The fabrication of hollow structure of SiC fiber reinforced titanium matrix composite, Materials Science & Technology, 19(2), 28(2011)
18 (赵冰, 廖金华, 侯红亮, SiC纤维增强钛基复合材料空心结构成形研究, 材料科学与工艺, 19(2), 28(2011))
[1] 胡满银, 欧阳德来, 崔霞, 杜海明, 徐勇. 微波烧结原位合成TiC增强钛复合材料的性能[J]. 材料研究学报, 2021, 35(4): 277-283.
[2] 马文静,陈志国,李鸿娟,袁珍贵,郑子樵. 新型热处理调控Al-Cu-Mg合金残余应力的工艺和机理[J]. 材料研究学报, 2019, 33(6): 435-442.
[3] 刘庆生,许真铭,汤卫东. 基于细观结构的铝电解阴极炭块钠扩散过程的数值分析和实验研究[J]. 材料研究学报, 2017, 31(3): 233-240.
[4] 娄菊红, 杨延清. 基体性能对复合材料热残余应力的影响*[J]. 材料研究学报, 2016, 30(7): 503-508.
[5] 李桂荣,王芳芳,郑瑞,王宏明,黄超,薛飞,朱弋. 脉冲强磁场处理固态铝基复合材料的力学性能和强韧化机制*[J]. 材料研究学报, 2016, 30(10): 745-752.
[6] 王效岗,李乐毅,王海澜,周存龙,黄庆学. 双金属复合板材辊式矫直的数值模型*[J]. 材料研究学报, 2014, 28(4): 308-313.
[7] 张青来,洪妍鑫,王荣,李兴成,段钧剑,张永康. 激光冲击成形对AZ31镁合金微观结构和残余应力的影响*[J]. 材料研究学报, 2014, 28(3): 166-172.
[8] 张小亮, 王兆希, 屈宝平, 施惠基. P20钢电火花成形加工表层的组织结构和性能*[J]. 材料研究学报, 2013, 27(5): 449-453.
[9] 毛志刚 谭丽丽 郑丰 黄洁雯 樊新民 杨柯. 无镍不锈钢冠脉支架力学行为的有限元模拟[J]. 材料研究学报, 2012, 26(2): 125-131.
[10] 杨开怀 陈文哲. 变形方式对模压变形5052铝合金影响的有限元模拟与试验研究[J]. 材料研究学报, 2011, 25(6): 625-629.
[11] 肖代红 袁铁锤 贺跃辉. 原位自生Ti--B--Si--C系复合材料的制备和性能[J]. 材料研究学报, 2011, 25(4): 413-416.
[12] 徐跃 张彤 李柳暗 李红东 吕宪义 金曾孙. 自支撑硼掺杂金刚石膜残余应力和微观应力的XRD分析[J]. 材料研究学报, 2009, 23(3): 264-268.
[13] 赵大方 李效东 郑春满. 添加填料合成SiC(Al)纤维的先驱体聚铝碳硅烷[J]. 材料研究学报, 2008, 22(6): 623-628.
[14] 李邦盛; 尚俊玲; 郭景杰; 傅恒志 . 原位TiB/Ti复合材料的熔铸制备及其显微组织[J]. 材料研究学报, 2005, 19(4): 375-381.
[15] 包亦望; 苏盛彪; 黄肇瑞 . 对称型陶瓷层状复合材料中的残余应力分析[J]. 材料研究学报, 2002, 16(5): 449-457.