Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (4): 255-262    DOI: 10.11901/1005.3093.2015.422
  本期目录 | 过刊浏览 |
铜箔表面形貌对CVD法生长石墨烯质量的影响
宋瑞利1, 刘平2(), 张柯2, 刘新宽2, 陈小红2
1. 上海理工大学机械工程学院 上海 200093
2. 上海理工大学材料科学与工程学院 上海 200093
Effect of Copper Foil Surface Morphology on the Quality of Graphene Grown by CVD
SONG Ruili1, LIU Ping2,**(), ZHANG Ke2, LIU Xinkuan2, CHEN Xiaohong2
1. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2. School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
引用本文:

宋瑞利, 刘平, 张柯, 刘新宽, 陈小红. 铜箔表面形貌对CVD法生长石墨烯质量的影响[J]. 材料研究学报, 2016, 30(4): 255-262.
Ruili SONG, Ping LIU, Ke ZHANG, Xinkuan LIU, Xiaohong CHEN. Effect of Copper Foil Surface Morphology on the Quality of Graphene Grown by CVD[J]. Chinese Journal of Materials Research, 2016, 30(4): 255-262.

全文: PDF(5251 KB)   HTML
摘要: 

为了制备高质量、少层数的石墨烯薄膜, 分别用25%HCl、2 mol/L FeCl3腐蚀液及电化学抛光法处理铜箔, 改善其表面平整度, 然后利用化学气相沉积法在其表面生长石墨烯。通过调整2 mol/L FeCl3腐蚀铜箔的时间和电化学抛光铜箔的参数, 根据SEM表征结果确定出腐蚀时间为30 s, 抛光电压为10 V, 抛光时间为60 s时, 铜箔表面最为平整。这些方法处理铜箔后生长的石墨烯经拉曼光谱表征后得出, 随着铜箔表面逐渐平整, 铜箔表面更易生长出少层数, 高质量的石墨烯薄膜。实验中还通过调整化学气相沉积(CVD)炉中通乙烯的时间来制备石墨烯。经SEM和拉曼光谱表征可知, 延长生长时间, 石墨烯薄膜的层数变厚, 生长时间过短则石墨烯生长不连续。生长时间为30 s时, 可生长出单层高质量的石墨烯薄膜, 且石墨烯薄膜均匀致密; 生长时间为60 s时, 铜箔表面沉积一层石墨。所以生长单层石墨烯, 控制生长时间是必要的。

关键词 无机非金属材料铜箔石墨烯化学气相沉积法质量    
Abstract

High-quality and few-layered graphene was grown by chemical vapor deposition (CVD) on copper foils, which were pre-treated by etching with 25%HCl or 2 mol/L FeCl3 and then electrochemical polishing in order to improve their surface smoothness. The surface morphology of the copper foils and the deposited graphene were characterized by means of Raman spectroscopy, XRD and SEM etc. The results showed that copper foils with desired surface smoothness would be acquired through etching with 2 mol/L FeCl3 for 30 s and then electrochemical polishing for 60 s by applied voltage of 10 V; Films of layered graphene with less defects could be deposited on the pre-treated copper foils. The thickness of graphene films increased with the increasing time, however for a short deposition time the formed graphene films were discontinuous with poor quality. The monolayered high-quality graphene films could be prepared by depositing for 30 s, whilst the deposition time increased to 60 s a graphite film could form on the surface. In other word, it is necessary to control the deposition on time for growing the desired monolayered graphene films.

Key wordsinorganic non-metallic materials    copper foil    graphene    CVD    quality
收稿日期: 2015-07-27     
ZTFLH:  TB331  
基金资助:国家自然科学基金青年基金资助项目51301106
作者简介: 本文联系人: 刘平, 教授
图1  石墨烯在不平整铜箔表面生长时的生长机理模型图
图2  铜箔退火前后的XRD和SEM表征图
图3  不同处理条件下的铜箔的表面形貌
图4  不同处理条件下的铜箔表面生长的石墨烯的拉曼表征图
Curve number
of Fig.4
Treatment condition ID/IG I2D/IG Full width at half maximum (cm-1)
1 25%HCl, 10 min 0.67 0.93 57
2 2 mol/L FeCl3, 15 s 0.57 1.14 40
3 2 mol/L FeCl3, 30 s 0.51 1.71 39
4 2 mol/L FeCl3, 45 s 1.14 0.86 47
5 Polished 30 s 0.6 2.6 35.5
6 Polished 45 s 0.42 1.38 47
7 Polished 60 s 0.4 1.63 44
表1  不同处理条件下的铜箔表面生长的石墨烯的拉曼数据
图5  10 V 60 s电化学抛光铜箔表面生长的石墨烯的表征图
图6  10 V 60 s电化学抛光铜箔表面生长的石墨烯的Raman图
1 A. K. Geim, K. S. Novoselov, The rise of graphene, Nature Material, 6(3), 183(2007)
2 S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K.S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, Roll-to-roll Production of 30-inch Graphene Films for Transparent Electrodes, Nature Nanotechnology, 5(20), 574(2010)
doi: 10.1038/nnano.2010.132 pmid: 20562870
3 M. D. Stoller, S. Park, Y. W. Zhu, Jinho An, Rodney S. Ruoff, Graphene-based ultracapacitors, Nano Letters, 8(10), 3498(2008)
4 M. M. Qin, W. Ji, Y. Y. Feng, W. Feng, Transparent conductive graphene films prepared by hydroiodic acid and thermal reduction, Chin. Phys. B, 23(2), 28103(2014)
doi: 10.1088/1674-1056/23/2/028103
5 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 306(5296), 666(2004)
doi: 10.1126/science.1102896 pmid: 15499015
6 WANG Wenrong, ZHOU Yuxiu, LI Tie, WANG Yuelin, XIE Xiaoming, Research on synthesis of high-quality and large-scale graphene films by chemical vapor deposition, Acta Phys. Sin., 61(3), 38702(2012)
6 (王文荣, 周玉修, 李铁, 王跃林, 谢晓明, 高质量大面积石墨烯的化学气相沉积制备方法研究, 物理学报, 61(3), 38702(2012))
7 L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L. P. Ma, Z. Zhang, Q. Fu, L. M. Peng, X. Bao, H. M. Cheng, Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum, Nature Communications, 3(699), 1(2012)
doi: 10.1038/ncomms1702 pmid: 22426220
8 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457(7230), 706(2009)
doi: 10.1038/nature07719 pmid: 14024896201214601402425
9 Q. Li, H. Chou, J. H. Zhong, J. Y. Liu, A. Dolocan, J. Zhang, Y. Zhou, R. S. Ruoff, S. Chen, W. Cai, Growth of adlayergraphene on Cu studied by carbon isotope labeling, Nano Letters, 13(2), 486(2013)
doi: 10.1021/nl303879k
10 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324(5), 1312(2009)
pmid: 328017472034514550170888592922232222194237752813807468703299238941
11 Y. P. Hsieh, Y. W. Wang, C. C. Ting, H. C. Wang, K. Y. Chen, C. C. Yang, Effect of catalyst morphology on the quality of CVD grown graphene, Journal of Nanomaterials, 2013(2013)
doi: 10.1155/2013/393724
12 LI Xu, ZHAO Weifeng, CHEN Guohua, Research progress in preparation and characterization graphene, Material Review, 22(8), 48(2008)
12 (李旭, 赵卫峰, 陈国华, 石墨烯的制备与表征研究, 材料导报, 22(8), 48(2008))
doi: 10.3321/j.issn:1005-023X.2008.08.013
13 REN Wencai, GAO Libo, MA Laipeng, CHENG Huiming, Preparation of graphene by chemical vapor deposition, New Carbon Materials, 26(1), 71(2011)
13 (任文才, 高力波, 马来鹏, 成会明, 石墨烯的化学气相沉积法制备, 新型炭材料, 26(1), 71(2011))
14 TIAN Juntao, Overview of the production process on rolled copper foil, Shanghai Nonferrous Metals, 35(4), 170(2014)
14 (田军涛, 压延铜箔生产工艺概述, 上海有色金属, 35(4), 170(2014))
doi: 10.13258/j.cnki.snm.2014.04.008
15 HAN Chen, SUN Futao, Technological analysis of nonferrous metal strip produced by steckel mills, Shanghai Nonferrous Metals, 36(3), 131(2015)
15 (韩晨, 孙付涛, 炉卷轧机应用于有色金属板带材生产工艺分析, 上海有色金属, 36(3), 131(2015))
doi: 10.13258/j.cnki.snm.2015.03.009
16 FU Honghua, Copper strip slitting defect analysis and quality control, Shanghai Nonferrous Metals, 35(4), 150(2014)
16 (傅红华, 铜带材纵剪缺陷分析及质量控制, 上海有色金属, 35(4), 150(2014))
doi: 10.13258/j.cnki.snm.2014.04.003
17 X. Li, C. W. Magnuson, A. Venugopal, M. Tromp Rudolf, B. Hannon James, M. Vogel Eric, Colombo Luigi, S. Ruoff Rodney, Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper, Journal of the American Chemical Society, 133(9), 2816(2011)
doi: 10.1021/ja109793s
18 H. Wang, G. Wang, P. Bao, S. Yang, W. Zhu, X. Xie, W. J. Zhang, Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation, Journal of the American Chemical Society, 134(8), 3627(2012)
19 T. R. Wu, G. Q. Ding, H. L. Shen, H. M. Wang, L. Sun, D. Jiang, X. M. Xie, M. H. Jiang, Triggering the continuous growth of graphene toward millimeter-sized grains, Advanced Functional Materials, 23(2), 198(2013)
doi: 10.1002/adfm.201201577
20 Gang Hee Han, Fethullah Güneş, Jung Jun Bae, Eun Sung Kim, Seung Jin Chae, Hyeon-Jin Shin, Jae-Young Choi, Didier Pribat, Young Hee Lee, Influence of copper morphology in forming nucleation seeds for graphene growth, Nano Lett., 11(10), 4144(2011)
doi: 10.1021/nl201980p pmid: 21863812
21 Shonali Dhingra, Jenfeng Hsu, Ivan Vlassiouk, Brian D’Urso, Chemical vapor deposition of graphene on large-domain ultra-flat copper, Carbon, 69, 188(2014)
22 Dongmok Lee, Gi Duk Kwon, Jung Ho Kim, Eric Moyen, Young Hee Lee, Seunghyun Baik, Didier Pribat, Significant enhancement of the electrical transport properties of graphene films by controlling the surface roughness of Cu foils before and during chemical vapor deposition, Nanoscale, 6, 12943(2014)
23 Pavel Procházka, Jindřich Mach, Dominik Bischoff, Zuzana Liš ková, Petr Dvořák, Marek Vaňatka, Pauline Simonet , Anastasia Varlet, Dušan Hemzal, Martin Petrenec, Lukáš Kalina, Miroslav Bartošík, Klaus Ensslin, Peter Varga, Jan Čechal, Tomáš Šikola, Ultrasmooth metallic foils for growth of high-quality graphene by chemical vapor deposition, Nano Technology, 25(18), 185601(2014)
24 H. I. Rasool, E. B. Song, M. J. Allen, J. K. Wassei, R. B. Kaner, K. L. Wang, B. H. Weiller, J. K. Gimzewski, Continuity of graphene on polycrystalline copper, Nano Letters, 11(1), 251(2010)
doi: 10.1021/nl1036403 pmid: 21117698
25 H. I. Rasool, E. B. Song, M. Mecklenburg, B. C. Regan, K. L. Wang, B. H. Weiller, J. K. Gimzewski, Atomic-scale characterization of graphene grown on copper (100) single crystals, Journal of the American Chemical Society, 133(32), 12536(2011)
doi: 10.1021/ja200245p
26 Y. F. Zhang, T. Gao, Y. B. Gao, S. B. Xie, Q. Q. Ji, K. Yan, H. L. Peng, Z. F. Liul, Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy, ACS Nano, 5(5), 4014(2011)
doi: 10.1021/nn200573v
27 S. Nie, J. M. Wofford, N. C. Bartelt, O. D. Dubon, K.F. McCarty, Origin of the mosaicity in graphene grown on Cu(111), Physical Review B, 84(15), 155425(2011)
28 YANG Lianqiao, FENG Wei, WANG Lang, ZHANG Jianhua, Study on fabrication parameter of graphene on copper by CVD , Journal of Huazhong University of Science and Technology (Nature Science Edition), 42(10), 5(2014)
28 (杨连乔, 冯伟, 王浪, 张建华, 铜基石墨烯的CVD法制备工艺参数研究, 华中科技大学学报(自然科学版), 42(10), 5(2014))
doi: 10.13245/j.hust.141002
29 X. L. Guo, X. Yi, Studies on electrochemical polishing of stainless steel, Electroplating and Finishing, 20(5), 11(2001)
30 B. Du, H. Q. Li, Development of electrochemical polishing technology, Surface Technology, 36(2), 56(2007)
doi: 10.2514/1.26230
31 A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Letters, 9(1), 30(2009)
doi: 10.1021/nl801827v pmid: 19046078
32 L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, Raman spectroscopy in graphene, Phys., Rep., 473(5-6), 51(2009)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[9] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] 王春锦, 陈文革, 亢宁宁, 杨涛. 石墨烯调控3D打印功能钛的组织和性能[J]. 材料研究学报, 2023, 37(10): 791-800.
[11] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[12] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[13] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[14] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[15] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.