Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (10): 794-800    DOI: 10.11901/1005.3093.2014.523
  本期目录 | 过刊浏览 |
生物酶催化接枝芳纶纤维和复合材料的界面性能
刘洋1(),梁国正2
1. 咸阳师范学院化学与化工学院 咸阳 712000
2. 苏州大学化学化工学院 苏州 215006
Surface Modification and Interface Properties of Enzyme-mediated Grafting Kevlar Fibers
Yang LIU1,**(),Guozheng LIANG2
1. School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, China
2. Department of Chemistryand Chemical Engineering, Soochow university, Suzhou 215006, China
引用本文:

刘洋,梁国正. 生物酶催化接枝芳纶纤维和复合材料的界面性能[J]. 材料研究学报, 2015, 29(10): 794-800.
Yang LIU, Guozheng LIANG. Surface Modification and Interface Properties of Enzyme-mediated Grafting Kevlar Fibers[J]. Chinese Journal of Materials Research, 2015, 29(10): 794-800.

全文: PDF(2864 KB)   HTML
摘要: 

用辣根过氧化物酶(HRP)作为生物活性酶催化剂在芳纶纤维纤维表面上进行接枝反应, 生成一层带有活性官能团烯丙基缩水甘油醚的包覆层, 研究了生物酶催化接枝反应对芳纶纤维综合性能的影响。结果表明, 生物酶能有效地催化纤维上的接枝反应, 酶的浓度影响单体在纤维上的接枝率。随着酶浓度的提高有更多的单体接枝到纤维上, 使表面极性官能团含量、表面自由能和表面粗糙度大幅度地提高, 使纤维与树脂之间的界面结合强度增强。同时, 与原有的纤维改性方法相比, 生物酶催化接枝法基本保持了芳纶纤维的优异热学和力学性能。

关键词 有机高分子材料生物酶接枝芳纶纤维表面改性机械性能    
Abstract

Surface coating with functional groups on Poly (p-phenylene terephthalaramide) (Kevlar, KF) fibers was prepared through a polymerization using horseradish peroxidase (HRP) as bioactive catalyst. The effect of this approach on integrated properties of KF fibers was investigated. The results show that the polymerization can effectively perform on the fiber surface with the presence of HRP. The HRP content affects the grafting percentage of the fiber surface. More monomer was grafted on the fiber surface with the increase of HRP content, and there with the fiber surface possessed higher amount of polargroups, higher surface free energy, and higher roughness which then resulted in the enhancement of interface adhesion between the fibers with the resin matrix of the composite fibers/resin. Besides, this HRP catalytically grafted fibers hold more or less the same thermal and mechanical properties as the original KF fibers.

Key wordsorganic polymer materials    enzyme-mediated grafting    kevlar fibers    surface modification    mechanical properties
收稿日期: 2014-09-23     
基金资助:* 陕西省教育厅项目2013JK0918和咸阳师范学院专项科研基金12XSYK026资助项目。
Reagent Characterization Manufacturers
Kevlar 1414 Industrial products Shanghai Synthetic Fibre Research Institute
Horseradish peroxidase Industrial products Sinopharm chemical reagent
Phosphate buffer AR Commercially available
Deionized water Commercially available
Biscyanatophenylpropane Industrial products Sinopharm chemical reagent
Acetone AR Sinopharm chemical reagent
Allyl glycidyl ether 99% Sinopharm chemical reagent
Hexadecyl trimethyl ammonium Bromide AR Sinopharm chemical reagent
n-butyl alcohol AR Sinopharm chemical reagent
Isooctane AR Sinopharm chemical reagent
1, 4-dioxane AR Sinopharm chemical reagent
表1  主要实验原料
图1  单丝拉伸测试样品图
图2  不同酶浓度条件下纤维的表面形貌
图3  HRP含量对生物酶催化接枝KF纤维接枝率的影响
图4  不同酶浓度条件下纤维表面红外图谱
图5  不同酶浓度条件下纤维表面XPS扫描图谱
Specimens Compositions (%, atom fraction)
C1s O1s N1s
KF 76.1 12.4 11.5
KF-0.005 75.3 13.8 10.9
KF-0.01 74.9 13.6 11.5
KF-0.02 71.4 21.2 7.4
KF-0.03 70.8 20.8 9.4
表2  不同酶浓度条件下纤维表面元素组成含量
图6  不同酶浓度条件下纤维表面广角X衍射谱图
Specimens Crystalline Xc (%) Crystal size (nm)
L100 L200 L004
KF 62.33 4.2 4.3 3.3
KF-0.01 60.59 4.1 4.0 3.1
KF-0.02 59.32 3.9 4.0 3.2
KF-0.03 59.08 4.0 3.9 3.2
表3  不同酶浓度条件下纤维表面晶体参数
图7  不同酶浓度条件下纤维单丝拉伸性能
图8  不同酶浓度条件下纤维的TG曲线和DTG曲线
Specimens Tdi(℃) Tmax(℃) Yc at 800℃ (%)
KF 558 565.4 36.8
KF-0.01 557 562.8 33.2
KF-0.02 557 562.5 27.5
KF-0.03 557 560.3 24.6
表4  不同酶浓度条件下纤维的相关热分解参数
Specimens Contact angle (°) γp (mN/m) γd (mN/m) γ (mN/m)
Deionized water Ethylene glycol
KF 84.5±1.5 76.0±1.2 4.8 17.2 22.0
KF-0.01 80.3±1.2 75.7±1.0 5.2 18.2 23.4
KF-0.02 77.1±1.5 74.0±1.2 7.1 18.4 25.5
KF-0.03 65.6±1.7 72.8±1.7 10.8 18.5 29.3
表5  不同酶浓度条件下纤维的接触角以及表面能
图9  不同酶浓度条件下纤维的界面结合强度
1 M. Afshari, D. J. Sikkema, K. Lee, M. Bogle,High performance fibers based on rigid and flexible polymers, Polymer Reviews, 48(2), 230(2008)
2 M. Takayanagi, S. Ueta, W. Lei, K. Koga,A new chemical method of surface-treatment of Kevlar fiber for composites with epoxy resin, Polymer journal, 19(5), 467(1987)
3 S. L. Kaplan, W. P. Hansen,Gas Plasma Treatment of Kevlar and Spectra Fabrics for Advanced Composites, International SAMPE technology conference (SAMPE society for the advancement of material), (1997)
4 M. Su, A. Gu, G. Liang, L. Yuan,The effect of oxygen-plasma treatment on Kevlar fibers and the properties of Kevlar fibers/bismaleimide composites, Applied Surface Science, 257(8), 3158(2011)
5 F. Bédoui, N. S. Murthy, F. M. Zimmermann,Enhancement of fiber-matrix adhesion by laser ablation-induced surface microcorrugation, Journal of Materials Science, 43(16), 5585(2008)
6 G. Li, C. Zhang, Y. Wang, P. Li, Y. Yu, X. Jia,Interface correlation and toughness matching of phosphoric acid functionalized Kevlar fiber and epoxy matrix for filament winding composites, Composites Science and Technology, 68(15), 3208(2008)
7 R. Ou, H. Zhao, S. Sui, Y. Song, Q. Wang,Reinforcing effects of Kevlar fiber on the mechanical properties of wood-flour/high-density-polyethylene composites, Composites Part A: Applied Science and Manufacturing, 41(9), 1272(2010)
8 H-U. Bergmeyer. Methods of enzymatic analysis (Elsevier, 1965)p.129
9 S. Li, A. Gu, G. Liang, L. Yuan, J. Xue,A facile and green preparation of poly (glycidyl methacrylate) coated aramide fibers, Journal of Materials Chemistry, 22(18), 8960(2012)
10 G. Fan, J. Zhao, Y. Zhang, Z. Guo,Grafting modification of Kevlar fiber using horseradish peroxidase, Polymer bulletin, 56(4-5), 507(2006)
11 J. C. Zhao, G. Z. Liang,Z, A, Guo, G, S, Zhang, Surface Modification of UHMWPE Fibers Using Enzyme as Catalyst, Acta Materiae Compositae Sinica, 21(4), 62(2004)
11 (赵景婵, 梁国正, 郭治安, 张钢升, 生物酶催化 UHMWPE 纤维表面改性, 复合材料学报, 21(4), 62(2004))
12 R. J. Davies, M. Burghammer, C. Riekel,Simultaneous microfocus Raman and microfocus XRD: probing the deformation of a single high-performance fiber. Macromolecules, 39(14), 4834(2006)
13 Z. Xu, L. Chen, Y. Huang, J. Li, X. Wu, X. Li,Wettability of carbon fibers modified by acrylic acid and interface properties of carbon fiber/epoxy, European polymer journal, 44(2), 494(2008)
14 A. Fukunaga, S. Ueda, M. Nagumo,Air-oxidation and anodization of pitch-based carbon fibers, Carbon, 37(7), 1081(1999)
15 A. Bismarck, M. Kumru, B. Song, J. Springer, E. Moos, J. Karger-Kocsis,Study on surface and mechanical fiber characteristics and their effect on the adhesion properties to a polycarbonate matrix tuned by anodic carbon fiber oxidation, Composites Part A: Applied Science and Manufacturing, 30(12), 1351(1999)
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[4] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[5] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[6] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[7] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[8] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[9] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[10] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[11] 陈怿咨, 张承双, 陈平. 用常压空气等离子体对PBO纤维表面接枝改性[J]. 材料研究学报, 2021, 35(9): 641-650.
[12] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[13] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[14] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[15] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.