Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (10): 745-750    DOI: 10.11901/1005.3093.2014.233
  本期目录 | 过刊浏览 |
退火温度对铜铟镓硒薄膜电学性能的影响
欧阳良琦,赵明,庄大明(),孙汝军,郭力,李晓龙,曹明杰
清华大学材料学院 先进成形制造教育部重点实验室 北京 100084
Influence of Annealing Temperature on Electric Properties of CuIn1-xGaxSe2 Thin Films
Liangqi OUYANG,Ming ZHAO,Daming ZHUANG(),Rujun SUN,Li GUO,Xiaolong LI,Mingjie CAO
Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084
引用本文:

欧阳良琦,赵明,庄大明,孙汝军,郭力,李晓龙,曹明杰. 退火温度对铜铟镓硒薄膜电学性能的影响[J]. 材料研究学报, 2014, 28(10): 745-750.
Liangqi OUYANG, Ming ZHAO, Daming ZHUANG, Rujun SUN, Li GUO, Xiaolong LI, Mingjie CAO. Influence of Annealing Temperature on Electric Properties of CuIn1-xGaxSe2 Thin Films[J]. Chinese Journal of Materials Research, 2014, 28(10): 745-750.

全文: PDF(2710 KB)   HTML
摘要: 

使用磁控溅射铜铟镓硒(CuIn1-xGaxSe2, CIGS)四元陶瓷靶材制备沉积态预制膜, 在240-550℃对预制膜进行退火处理, 着重研究了退火温度对薄膜电学性能(载流子浓度及迁移率)的影响。结果表明: 退火温度低于270℃时薄膜中存在CuSe低电阻相, CIGS薄膜的载流子浓度在1017-1019 cm-3, 迁移率在0.1 cm2V-1s-1左右, 不适于作为太阳电池的吸收层; 当退火温度高于410℃时薄膜中不存在CuSe相, 薄膜具有10 cm2V-1s-1左右的较高迁移率, 载流子浓度在1014-1017 cm-3; 退火温度高于410℃时, 随着退火温度的升高薄膜晶粒长大, 结晶性增强, 此时薄膜内部缺陷减少, 载流子浓度升高; 对于用作太阳电池吸收层的CIGS, 从载流子浓度及迁移率的角度评判, 合适的退火温度区间为450-550℃。

关键词 无机非金属材料太阳电池铜铟镓硒溅射电学性能    
Abstract

The as-deposited CuIn1-xGaxSe2 (CIGS) thin films were fabricated by magnetron sputtering from a quaternary CIGS target, and then the as-deposited films were annealed in a temperature range from 240℃ to 550℃. The effect of the annealing temperature on the electric properties (carrier concentration and carrier mobility) of the films was investigated in particular. The results show that when the annealing temperature was lower than 270℃, the highly conducive CuSe phase existed in the films leading to a high carrier concentration (1017-1019 cm-3) and a low carrier mobility (~0.1 cm2V-1s-1). These films are not suited for CIGS absorber usage. When the annealing temperature was higher than 410℃, the carrier mobility of the films was high about 10 cm2V-1s-1 and the carrier concentration was in a range of 1014-1017 cm-3 due to the disappearance of the CuSe phase. When the annealing temperature was higher than 410℃, with the increase of the annealing temperature the grains grew larger and the crystallinity of the films was enhanced, which could reduce the defects in the films and result in the decrease of the carrier concentration. From the aspect of the carrier concentration and the carrier mobility, the appropriate annealing temperature for fabricating the absorbers of the CIGS solar cells is from 450℃ to 550℃.

Key wordsinorganic non-metallic materials    solar cells    CIGS    sputtering    electric property
收稿日期: 2014-05-08     
Base pressure/Pa Substrate temperature/℃ Working gas pressure/Pa Target power density / Wcm-2
2.0×10-3 200 0.7 0.70
表1  制备铜铟镓硒薄膜的溅射工艺参数
图1  退火温度对CIGS薄膜的载流子浓度和迁移率的影响
图2  退火温度不同的CIGS薄膜的XRD衍射图谱
图3  退火温度对CIGS薄膜第一主强峰半高宽以及第二与第一主强峰峰强之比的影响
图4  退火温度不同的CIGS薄膜的Raman散射图谱
图5  沉积态薄膜和不同硒化温度CIGS薄膜的表面形貌
1 A. J. Zhou, D. Mei, X. G. Kong, X. H. Xu, L. D. Feng, X. Y. Dai, T. Gao, J. Z. Li,One-step synthesis of Cu(In, Ga)Se2 absorber layers by magnetron sputtering from a single quaternary target, Thin Solid Films, 520, 6068(2012)
2 P. Fan, J. R. Chi, G. X. Liang, X. M. Cai, D. P. Zhang, Z. H. Zheng, P. J. Cao, T. B. Chen,Fabrication of Cu(In, Ga)Se2 thin films by ion beam sputtering deposition from a quaternary target at different substrate temperatures, Journal of Materials Science-Materials in Electronics, 23, 1957(2012)
3 C. H. Chen, W. C. Shih, C. Y. Chien, C. H. Hsu, Y. H. Wu, C. H. Lai,A promising sputtering route for one-step fabrication of chalcopyrite phase Cu(In, Ga)Se2 absorbers without extra Se supply, Solar Energy Materials and Solar Cells, 103, 25(2012)
4 A. Chiril?, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A. N. Tiwari,Potassium-induced surface modification of Cu(In, Ga)Se2 thin films for high-efficiency solar cells, Nature Materials, 12, 1107(2013)
5 P. Reinhard, S. Buecheler, A. N. Tiwari,Technological status of Cu(In, Ga)(Se, S)2-based photovoltaics, Solar Energy Materials and Solar Cells, 119, 287(2013)
6 J. A. Frantz, R. Y. Bekele, V. Q. Nguyen, J. S. Sanghera, A. Bruce, S. V. Frolov, M. Cyrus, I. D. Aggarwal,Cu(In, Ga)Se2 thin films and devices sputtered from a single target without additional selenization, Thin Solid Films, 519, 7763(2011)
7 J. H. Shi, Z. Q. Li, D. W. Zhang, Q. Q. Liu, Z. Sun, S. M. Huang,Fabrication of Cu(In, Ga)Se2 thin films by sputtering from a single quaternary chalcogenide target, Progress in Photovoltaics, 19, 160(2011)
8 S. Puttnins, S. Levcenco, K. Schwarzburg, G. Benndorf, F. Daume, A. Rahm, A. Braun, M. Grundmann, T. Unold,Effect of sodium on material and device quality deposited Cu(In, Ga)Se2, Solar Energy Materials and Solar Cells, 119, 281(2013)
9 S. Niki, P. J. Fons, A. Yamada, Y. Lacroix, H. Shibata, H. Oyanagi, M. Nishitani, T. Negami, T. Wada,Effects of the surface Cu2-xSe phase on the growth and properties of CuInSe2 films, Applied Physics Letters, 74(11), 1630(1999)
10 J. F. Han, C. Liao, T. Jiang, H. M. Xie,Investigation of chalcopyrite film growth: an evolution of thin film morphology and structure during selenization, Journal of Materials Science-Materials in Electronics, 24, 4636(2013)
11 D. Liao, A. Rockett,Epitaxial growth of Cu(In, Ga)Se2 on GaAs (110), Journal of Applied Physics, 91(4), 1978(2002)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[14] 张鹏, 黄东, 张福全, 叶崇, 伍孝, 吴晃. 中间相沥青基碳纤维石墨化度对Cf/Al界面损伤的影响[J]. 材料研究学报, 2022, 36(8): 579-590.
[15] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.