Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (9): 689-696    DOI: 10.11901/1005.3093.2014.216
  本期目录 | 过刊浏览 |
低碳钢焊缝中心凝固相组织的元胞自动机法模拟*
张敏(),徐蔼彦,汪强,李露露
西安理工大学材料科学与工程学院 西安 710048
Micro-simulation of Solidification on Mild Steel of Welding Pool Base on the Method of Cellular Automata
Min ZHANG(),Aiyan XU,Qiang WANG,Lulu LI
School of Material Science and Engineering, Xi’an University of Technology, Xi’an 710048
引用本文:

张敏,徐蔼彦,汪强,李露露. 低碳钢焊缝中心凝固相组织的元胞自动机法模拟*[J]. 材料研究学报, 2014, 28(9): 689-696.
Min ZHANG, Aiyan XU, Qiang WANG, Lulu LI. Micro-simulation of Solidification on Mild Steel of Welding Pool Base on the Method of Cellular Automata[J]. Chinese Journal of Materials Research, 2014, 28(9): 689-696.

全文: PDF(4698 KB)   HTML
摘要: 

基于元胞自动机法扩展了现有的焊接熔池凝固过程形核、生长及溶质扩散模拟模型, 模拟了Fe-0.05%C二元合金焊接过程中枝晶的生长形态和结晶过程中溶质的分布及扩散过程。同时, 以Fe-C二元相图为基点, 根据溶质浓度不同相组织不同原理模拟计算了焊接熔池凝固后相组织的分布, 建立了α+P和P+Fe3C两种组织比例值与溶质浓度、冷却速度和形核基底数等参数的数学模型。结果表明: 模拟得到的低碳钢焊缝组织分布与试验结果相符; 基于溶质浓度变化的相组织控制模型能预测实际低碳钢的焊后焊缝组织。溶质浓度、冷却速度和形核基底数对α+P和P+Fe3C两种组织比例的影响都较为明显, 影响效果相对独立; 回归分析得到的组织控制方程高度显著, 为焊缝的组织控制提供了一定的数据支持。

关键词 金属材料焊接熔池元胞自动机溶质浓度相组织    
Abstract

The present model, which described the nucleation and growth of crystals and diffusion of solute atoms during solidification, is extended by means of cellular automata method to simulate the growth morphology of dendrites and the solute distribution during the solidification process of welding pool of Fe-0.05%C binary alloy. Meanwhile, the phase distribution after solidification was simulated on basis of the Fe-C binary phase diagram and according to the principle that different solute concentration corresponds to different phase. Besides, a mathematical model is acquired to describe the relationship between the ratio of α+P to P+Fe3C with the parameters such as the solute concentration, the cooling rate and the basal number of nucleation. The results show that the simulated results of the microstructure distribution of weld mild steel is in good agreement with the experimental ones. Therefore, the microstructure model based on changes of solute concentration can effectively predict the real microstructure of weld joint of mild steel. The impact of solute concentration, cooling rate, and the basal number of nucleation on the ratio of α+P to P+Fe3C is much obvious, but the effect of each factor is independent relatively. The deduced regressive equation of microstructure control is highly significant, and it can provide data as reference for microstructure optimization of the weld joint.

Key wordsmetallic materials    welding pool    cellular automata    solute concentration    phase structure
收稿日期: 2014-04-28     
基金资助:* 国家自然科学基金51274162, 国家高技术研究发展计划(863计划)2013AA031303, 陕西省自然科学基金2012JM6003, 陕西省教育厅产业化培育项目2012JC16和西安市科技计划CX12163资助项目。
图1  Fe-C合金凝固相图
Temperature Name Equation
1493<T<1538 Curve a C l = - 9731.8 + 19.159 T - 0.0126 T 2 + 2.744 × 10 - 6 T 3
m L 1 = ? T L ? C L = ( 19.159 - 0.0252 T + 8.232 × 10 - 6 T 2 ) - 1
Curve b C S = - 56.61 + 0.116 T - 7.734 × 10 - 5 T 2 + 1.69 × 10 - 8 T 3
m S 1 = ? T S ? C S = ( 0.116 - 1.547 × 10 - 4 T + 5.07 × 10 - 8 T 2 ) - 1
Partition coefficient of solid-liquid phases k 1 = m L 1 m S 1 = 0.116 - 1.547 × 10 - 4 T + 5.07 × 10 - 8 T 2 19.159 - 0.0252 T + 8.232 × 10 - 6 T 2
1153<T<1493 Curve c C l = - 13.465 + 0.0507 T - 4.089 × 10 - 5 T 2 + 8.864 × 10 - 9 T 3
m L 2 = ? T L ? C L = ( 0.0507 - 8.178 × 10 - 5 T + 2.659 × 10 - 8 T 2 ) - 1
Curve d C S = - 5.084 + 0 . 02 6 T - 2.432 × 10 - 5 T 2 + 6.203 × 10 - 9 T 3
m S 2 = ? T S ? C S = ( 0 . 026 - 4.864 × 10 - 5 T + 1.861 × 10 - 8 T 2 ) - 1
Partition coefficient of solid-liquid phases k 2 = m L 2 m S 2 = 0.026 - 4.864 × 10 - 5 T + 1.861 × 10 - 8 T 2 0.0507 - 8.178 × 10 - 5 T + 2.659 × 10 - 8 T 2
表1  拟合方程
图2  Fe-0.05%C合金在生长时间为0.025 s、0.5 s、1 s和2.5 s时的枝晶形貌
图3  Fe-0.05%C合金在时间为0.025 s、0.5s、1 s和2.5 s时的溶质分布
图4  熔池凝固结束时枝晶形貌、固相中溶质浓度、微观组织的模拟结果和实验金相组织
图5  α+P和P+Fe3CII两种组织与溶质浓度、熔体冷却速率和形核基底数的关系
Source of variance Freedom Quadratic sum Mean square error F value Pr>F
one term 3 115.039222 0.7581 39.93 <0.0001
quadratic term 3 28.058494 0.1849 9.74 0.0035
residue 9 8.642282 0.960254
total 15 151.739998
表2  回归方程方差分析
1 Y. Z. He, H.L. Ding, L.F. Liu, K. Shin,Computer simulation of 2D grain growth using a cellular automata model based on the lowest energy principle, Materials Science and Engineering A, 429(1-2), 236(2006)
2 JIANG Hongxiang,ZHAO Jiuzhou, A three-dimensional cellular automaton simulation for dendritic growth, Acta metallurgica Sinica, 47(9), 1099(2011)
2 江鸿翔, 赵九州, 枝晶生长的三维元胞自动机模拟, 金属学报, 47(9), 1099(2011)
3 BU Xiaobing, LI Luoxing, ZHANG Liqiang, ZHU Biwu, XU Rong, WANG Shuiping, Calculation of liquid phase diffusion coefficient in microstructure simulation of Al-2%Cu binary alloy, The Chinese Journal of Nonferrous Metals, 23(5), 1189(2013)
3 卜晓兵, 李落星, 张立强, 朱必武, 徐 戎, 王水平, 二元合金微观组织模拟中液相扩散系数计算, 中国有色金属学报, 23(5), 1189(2013)
4 A. Anca, A. Cardona, J. Risso, V. D. Fachinotti,Finite element modeling of welding processes, Applied Mathematical Modelling, 35(2), 688(2011)
5 L. Nastac,Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys, Acta Materialia, 47(17), 4253(1999)
6 Y. Minoru, N. Yukinobu, H. Hiroshi, O. Kenichi,Numerical simulation of solidification structure formation during continuous casting in Fe–0.7mass%C alloy using cellular automaton method, ISIJ International, 46(6), 903(2006)
7 J. J. Li, J. C. Wang, G. C. Yang,Phase-field simulation of microstructure development involving nucleation and crystallographic orientations in alloy solidification, Journal of Crystal Growth, 309(1), 65(2007)
8 S. Luo, M. Y. Zhu,A two-dimensional model for the quantitative simulation of the dendritic growth with cellular automaton method, Computational Materials Science, 71, 10(2013)
9 H. Yin, S. D. Fellcelli,Dendrite growth simulation during solidification in the LENS process, Acta Materialia, 58(4), 1455(2010)
10 HUANG Anguo,YU Shengfu, LI Zhiyuan, Simulation on weld metal solidifying microstructure with cellular automaton, Transactions of The China Welding Institution, 29(4), 45(2008)
10 黄安国, 余圣甫, 李 志, 焊缝金属凝固组织元胞自动机模拟, 焊接学报, 29(4), 45(2008)
11 ZHAN Xiaohong, DONG Zhibo, WEI Yanhong, WANG Yong, Simulation of columnar dendrite grain growth in weld pool of Ni-Cr binary alloy, The Chinese Journal of Nonferrous Metals, 19(8), 1432(2009)
11 占小红, 董志波, 魏艳红, Ni-Cr二元合金焊接熔池中柱状枝晶生长模拟, 中国有色金属学报, 19(8), 1432(2009)
12 ZHAO Yuzhen,ZHAO Haiyan, SHI Yaowu, Microstructure simulation in welding 1Crl8Ni9Ti steel, Transactions of The China Welding Institution, 29(12), 18(2008)
12 赵玉珍, 赵海燕, 史耀武, 1Cr18Ni9Ti不锈钢焊接熔池的组织模拟, 焊接学报, 29(12), 18(2008)
13 M. Rappaz, C. A. Gandin,Probabilistic modeling of microstructure formation in solidification processes, Acta Metall Mater, 41(2), 345(1993)
14 HU Hanqi, Fundamentals of solidification(Second Edition) (Beijing, Machinery Industry Press, 2007) p.40
14 胡汉起, 金属凝固原理(第2版) (北京, 机械工业出版社, 2007)p.40
15 C. Beckermann, H. J. Diepers, I. Steinbach, A. Karma, X. Tong,Modeling melt convection in phase-field simulations of solidification, Journal of Computational Physics, 154(2), 468(1999)
16 D. C. Tsai, W. S. Hwang,Numerical simulation of solidification morphologies of Cu-0.6Cr casting alloy using modified cellular automaton model, Transaction of Nonferrous Metals Society of China, 20(6), 1072(2010)
17 H. Hakan, R. Matti,Microstructure evolution influenced by dislocation density gradients modeled in a reaction-diffusion system, Computational Materials Science, 67, 373(2013)
18 CHEN Jin,Numerical simulation on solidification microstructures using cellular automaton methods, PhD thesis, Southeast University(2005)
18 (陈 晋, 基于原胞自动机方法的凝固过程围观组织数值模拟, 博士学位论文, 东南大学(2005))
19 Y. C. Liu, R. F. Sommer, E. J. Mittemeijer,The austenite-ferrite transformation of ultralow-carbon Fe-C alloy transition from diffusion-to interface-controlled growth, Acta Materialia, 54(12), 3383(2006)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.