Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (9): 682-688    DOI: 10.11901/1005.3093.2014.204
  本期目录 | 过刊浏览 |
变形温度对应变强化深冷容器用S30408不锈钢组织结构演化的影响*
张颖1,高晓哲2,张滨1(),宋竹满3,郑津洋2,张广平3
1. 东北大学材料各向异性与织构教育部重点实验室 沈阳 110819
2. 浙江大学化工机械研究所 杭州 310027
3. 中国科学院金属研究所 沈阳材料科学国家(联合)实验室 沈阳 110016
Effect of Deformation Temperature on Microstructure Evolution of S30408 Austenitic Stainless Steel for Cold-stretching Cryogenic Vessels
Ying ZHANG1,Xiaozhe GAO2,Bin ZHANG1,**(),Zhuman SONG3,Jinyang ZHENG2,Guangping ZHANG3
1. Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819
2. Institute of Process Equipment, Zhejiang University, Hangzhou 310027
3. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

张颖,高晓哲,张滨,宋竹满,郑津洋,张广平. 变形温度对应变强化深冷容器用S30408不锈钢组织结构演化的影响*[J]. 材料研究学报, 2014, 28(9): 682-688.
Ying ZHANG, Xiaozhe GAO, Bin ZHANG, Zhuman SONG, Jinyang ZHENG, Guangping ZHANG. Effect of Deformation Temperature on Microstructure Evolution of S30408 Austenitic Stainless Steel for Cold-stretching Cryogenic Vessels[J]. Chinese Journal of Materials Research, 2014, 28(9): 682-688.

全文: PDF(3177 KB)   HTML
摘要: 

对经9%预变形、在不同低温条件下拉伸变形后的深冷容器用应变强化S30408奥氏体不锈钢进行一系列的微观组织结构表征, 研究了变形温度对其组织结构演变的影响。结果表明: 9%预变形后在1.0×10-3/s应变速率下在-60℃和-196℃的拉伸变形促进了S30408不锈钢发生从γ奥氏体向α'-马氏体的转变, 拉伸温度越低转变量越多、板条越细; 同时, 随着拉伸温度的降低S30408不锈钢的显微硬度值升高。低温拉伸形变诱发S30408奥氏体不锈钢马氏体相变, 其α'-马氏体与基体γ奥氏体的位向关系为{111}γ∥{011}α', <101>γ∥<111>α', 符合K-S关系。

关键词 金属材料奥氏体不锈钢深冷容器应变强化变形温度相变    
Abstract

Tensile tests of the 9% pre-strained S30408 austenitic stainless steel for cryogenic vessels were conducted at different cryogenic temperatures. Microstructures of the fractured specimens were examined. The results show that the phase transformation from γ-austenite to α'-martensite in the 9% pre-strained S30408 austenitic stainless steel was promoted under tensile deformation with a strain rate of 1.0×10-3/s at cryogenic temperatures. The lower the temperature at which tensile testing was performed, the more the amount of the phase transformation from γ into α', and the finer the martensite lath. The martensite transformation can be induced by the deformation of austenite, and the interface relationship between the α'-martensite and the γ-austenite phases is {111}γ∥{011}α' and <101>γ∥<111>α', which is in accord with the K-S model.

Key wordsmetallic materials    austenitic stainless steel    cryogenic pressure vessels    strain-strengthening    deformation temperature    phase transformation
收稿日期: 2014-04-22     
基金资助:* 国家自然科学基金51171045、51371047和51371180资助项目。
C Si Mn P S N Ni Cr
0.02 0.38 1.77 0.029 0.001 0.068 8.05 18.29
表1  S30408奥氏体不锈钢的化学成分(质量分数, %)
图1  不同处理条件下S30408样品的显微硬度值
图2  原始态及经9%预应变试样和9%预应变后在不同温度下拉断后S30408不锈钢试样的XRD衍射图谱
图3  原始态、经9%预应变及不同温度下30408 不锈钢拉伸断裂后试样中α'-bcc 马氏体和ε-fcc奥氏体的体积百分含量的理论计算结果
图4  不同温度拉伸断裂的304 不锈钢样品的TEM观察与选区电子衍射分析(a) 20℃(入射电子束方向为[013]), (b) -60℃(入射电子束方向为), (c) -196℃(入射电子束方向为[014])和(d) -196℃
图5  原始试样、9%预变形试样及不同温度下拉伸样品断口附近的EBSD表征(a) 原始, (b) 9%预变形, (c) 20℃, (d) -60℃, (e) -196℃
Phase φ 1 ? φ 2 Crystal face q Crystal orientation s
Original γ 153.7° 48.2° 29.1° ( 1 ? 11 ) 1.3204° [ 01 1 ? ] 1.0704°
α 141.6° 43.2° 87.2° (011) [ 11 1 ? ]
9% γ 235.9° 44.6° 37.4° ( 1 1 ? 1 ) 4.5361° [011] 2.5318°
α 313.2° 27.5° 59.0° ( 1 ? 01 ) [ 111 ]
20 °C γ 38.1° 31.6° 72.6° ( 11 1 ? ) 2.2109° [011] 1.0433°
α 174.8° 12.4° 18.1° ( 1 ? 10 ) [ 111 ]
-60 °C γ 297.9° 44.0° 83.5° ( 111 ) 1.8293° [ 1 ? 01 ] 0.6388°
α 112.3° 36.9° 46.8° (101) [ 11 1 ? ]
-196 °C γ 157.3° 40.7° 29.6° ( 1 1 ? 1 ) 2.5393° [ 1 ? 01 ] 3.2395°
α 83.6° 25.2° 84.8° ( 1 ? 10 ) [ 11 1 ? ]
表2  晶体学取向的计算
1 J. Y. Zheng, L. L. Wu, J. F. Shi, Extreme Pressure Equipments, Chinese Journal of Mechanical Engineering, 24(2), 202(2011)
2 ZHENG Jinyang, GUO Abin, MIU Cunjian, MA Li, WU Linlin, Cold Stretching Technique for Austenitic Stainless Steel Cryogenic Pressure Vessels, Pressure vessel Technology, (8), 28(2010)
2 郑津洋, 缪存坚, 郭阿宾, 马 利, 吴琳琳, 奥氏体不锈钢深冷容器室温应变强化技术, 压力容器, (8), 28(2010)
3 J. Johan, Ingvar, Austenitic Stainless Steel Pressu Vessels, United States, US3456831 A(1969)
4 ZHENG Jinyang, LI Yaxian, XU Ping, Influence Factors of Mechanical Property for Strain Strengthening Austenitic Stainless Steel, Journal of PLA University of Science and Technology(Natural Science Edition), 12(5), 512(2011)
4 郑津洋, 李雅娴, 徐 平, 应变强化用奥氏体不锈钢力学性能影响因素, 解放军理工大学学报(自然科学版), 12(5), 512(2011)
5 J. Peterkin, Cold Stretched Austenitic Stainless Steel Pressure Vessels, Symposium on Stress Analysis for M echanical Design, 96(1981)
6 M. R. da Rocha, C. A. S. de Oliveira,Evaluation of the martensitic transformations in austenitic stainless steels, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 517(1-2), 281(2009)
7 I. Meszaros, J. Prohaszka,Magnetic investigation of the effect of alpha '-martensite on the properties of austenitic stainless steel, Journal of Materials Processing Technology, 161(1-2), 162(2005)
8 J. A. Lichtenfeld, M. C. Mataya, C. J. Van Tyne,Effect of strain rate on stress-strain behavior of alloy 309 and 304L austenitic stainless steel, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 37A(1), 147(2006)
9 J. Talonen, H. Hanninen,Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels, Acta Materialia, 55(18), 6108(2007)
10 K. Mumtaz,Temperature dependence of martensitic transformation in austenitic stainless steel, Journal of Materials Science Letters, 22(6), 423(2003)
11 Q. X. Dai,Structural parameters of the martensite transformation for austenitic steels, Materials Characterization, 49(4), 367(2002)
12 Q. X. Dai,Design of martensite transformation temperature by calculation for austenitic steels, Materials Characterization, 52(4-5), 349(2004)
13 ZHENG Jinyang, HUANG Ze, MIU Cunjian, GAO Xiaozhe, ZHU Xiaobo, SHU Xiangyu, XIAO Qingfeng, MA Li, Effect of different control modes during tensile experiment, Journal of Zhejiang University(Engineering Science), 47(11), 2020(2013)
13 郑津洋, 黄 泽, 缪存坚, 高晓哲, 朱晓波, 舒翔宇, 晓风清, 马 利, 不同控制模式对单轴拉伸试验结果的影响, 浙江大学学报(工学版), 47(11), 2020(2013)
14 A. K. De, D. C. Murdock, M. C. Mataya, J. G. Speer, D. K. Matlock. Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction, Scripta Materialia, 50(12), 1445(2004)
15 P. Behjati, A. Najafizadeh, A. Kermanpur,Microstructural investigation on strengthening mechanisms of AISI 304L austenitic stainless steel during cryogenic deformation, Materials Science and Technology, 27(12), 1828(2011)
16 LIU Wei, LI Zhibin, WANG Xiang, ZOU Hua, WANG Lixin, Effect of Strain Rate on Strain Induced -Martensite Transformation and Mechanical Response of Austenitic Stainless Steels, Acta Metallurgica Sinica, 3(45), 285(2009)
16 刘 伟, 李志斌, 王 翔, 邹 骅, 王立新, 应变速率对奥氏体不锈钢应变诱发-马氏体转变和力学行为的影响, 金属学报, 3(45), 285(2009)
17 YANG Ping, The Electron Back-Scatter Diffraction Technology and Its Application, (Beijing, Metallurgical Industry Press, 2007) p.51-53
17 杨 平, 电子背散射衍射技术及其应用, (北京, 冶金工业出版社, 2007) p.p.51-53
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.