Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (12): 925-933    DOI: 10.11901/1005.3093.2014.185
  本期目录 | 过刊浏览 |
新型双子表面活性剂改性膨润土对苯酚的吸附特性
薛广海1,*,高芒来2,罗忠新2
1. 北京矿冶研究总院 北京 100160
2. 中国石油大学(北京)重质油国家重点实验室 理学院 北京 102249
Phenol Adsorption Characteristics of Two Novel Gemini Surfactants Modified Organ-bentonites
Guanghai XUE1,*,Manglai GAO2,Zhongxin LUO2
1. Beijing General Research Institute of Mining and Metallurgy, Beijing 100160
2. State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249
引用本文:

薛广海,高芒来,罗忠新. 新型双子表面活性剂改性膨润土对苯酚的吸附特性[J]. 材料研究学报, 2014, 28(12): 925-933.
Guanghai XUE, Manglai GAO, Zhongxin LUO. Phenol Adsorption Characteristics of Two Novel Gemini Surfactants Modified Organ-bentonites[J]. Chinese Journal of Materials Research, 2014, 28(12): 925-933.

全文: PDF(2091 KB)   HTML
摘要: 

使用新型Gemini表面活性剂C12-3-C122Br(BDP)和C12-3(OH)-C122Cl(BDHP)制备了两种有机膨润土BDP-Bt和BDHP-Bt, 并通过FT-IR、XRD表征了其微观结构, 探究了两种有机膨润土对苯酚的吸附特性。结果表明: 随着pH值的增大, 两种有机膨润土对苯酚的吸附效果提高; 两者对苯酚的吸附符合拟二级动力学模型; 吸附曲线符合Langumir吸附; 有机膨润土BDHP-Bt对苯酚的吸附效果优于BDP-Bt, 从分子设计角度提出了一种制备有机膨润土新思路; BDP-Bt和BDHP-Bt对苯酚的吸附热和吉布斯自由能都为负值, 表明这两种有机膨润土对苯酚的吸附为自发的放热过程。

关键词 无机非金属材料膨润土改性双子表面活性剂苯酚吸附    
Abstract

Bentonite was modified by means of ion exchange with two Gemini surfactants (1, 3-bis(dodecyldimethylammonio)-propane dibromide (BDP) and 1, 3-bis(dodecyldimethylammonio)-2-hydroxypropane dichloride (BDHP)) respectively to prepare two organ- bentonites BDP-B and BDHP-Bt. The organ-bentonites were characterized by X-ray diffraction (XRD) and FT-IR spectroscopy. Then their adsorption ability of phenol from aqueous solutions was examined in terms of the pH value and contact time. The results show that the adsorption of phenol increases with of the increasing pH value. The adsorption kinetics was found to follow the pseudo-second-order kinetic model and the equilibrium data fitted the Langmuir and Temkin equations better than Freundlich equation for both BDP modified bentonite (BDP-Bt) and BDHP modified bentonite (BDHP-Bt). The results also show that BDHP-Bt containing one hydroxyl in the Gemini surfactant molecule was more effective than BDP-Bt for the sorption of phenol from aqueous solutions. Thus, a new idea was put forward for the selection of high efficient modified agent, i.e., hydroxyl-containing Gemini surfactants. The negative values of ΔG° and ΔH° obtained from thermodynamic study of adsorption process indicated the spontaneous and exothermic nature for the two organ- bentonites.

Key wordsinorganic non-metallic materials    bentonite    modification    gemini surfactant    phenol    adsorption
收稿日期: 2014-04-12     
图1  原土、有机膨润土BDP-Bt和BDHP-Bt的红外谱图
图2  原土、有机膨润土BDP-Bt和BDHP-Bt的XRD谱图
图3  改性剂用量对苯酚吸附效果的影响
图4  反应时间和溶液pH对苯酚吸附效果的影响
Parameter Pseudo-second-order Pseudo-second-order Intraparticle diffusion
pH qe,exp k1 qe,cal R2 k2 qe,cal h R2 Kdif C R2
BDP-Bt
2 5.34 0.0126 1.55 0.4068 0.192 5.35 5.50 0.9997 0.270 3.86 0.9554
4 20.48 0.0269 6.78 0.7631 0.020 20.41 8.24 0.9993 0.891 13.86 0.9590
6 35.53 0.0288 7.68 0.7151 0.023 35.34 28.90 0.9999 1.169 27.60 0.9450
10 39.53 0.0283 7.25 0.6821 0.026 39.37 40.98 0.9999 1.028 32.46 0.9530
BDHP-Bt
2 5.80 0.0329 2.82 0.7022 0.031 8.91 1.11 0.9944 0.576 2.01 0.9984
4 20.89 0.0329 13.91 0.9379 0.006 21.79 2.74 0.9930 3.071 5.40 0.9981
6 39.38 0.0350 23.18 0.9525 0.004 40.65 6.86 0.9968 5.034 6.97 0.9740
10 43.77 0.0359 18.69 0.8909 0.007 44.64 13.07 0.9989 4.427 16.70 0.9788
  
Isotherms Parameters
BDP-Bt BDHP-Bt
Langmuir Qm=52.91 mg/g Qm=58.82 mg/g
Ka=0.067 L/mg Ka=0.078 L/mg
R2=0.9995 R2=0.9992
Freundlich 1/n=0.3171 1/n=0.3155
KF=10.03 mg/g KF=11.64 mg/g
R2=0.8738 R2=0.8321
Temkin α=1.2732 L/g α=1.5812 L/g
β=9.089 mg/L β=9.9905 mg/L
b=272.61 J/mol b=250.14 J/mol
R2=0.9673 R2=0.9536
表2  有机膨润土对苯酚的吸附等温线参数
图5  有机膨润土对苯酚吸附的拟二级动力学模型曲线
T/K BDP/BDHP-Bt
ΔG °/kJmol-1 ΔH°/kJmol-1 ΔS°/J(molK)-1
298 -23.81/-23.43 -5.50/-4.62 61.41/63.12
308 -24.42/-24.07
318 -25.02/-24.70
328 -25.65/-25.32
表3  有机膨润土对苯酚的吸附热力学参数
图6  有机膨润土对苯酚的吸附平衡曲线
1 FENG Siqi,WEI Wei, YUAN Yashu, ZHANG Li, Research advance of phenol degradation by microorganism, Liaoning Urban and Rural Environmental Science & Technology, 29(9), 49(2009)
1 (冯思琦, 魏 炜, 袁雅姝, 张 黎, 微生物降解苯酚的研究进展, 环境保护与循环经济, 29(9), 49(2009))
2 ZHU Jiangtao,HUANG Zhenghong, KANG Feiyu, FU Jin, YUE Yongde, Adsorption kinetics of activated bamboo charcoal for phenol, New Carbon Materials, 23(4), 326(2008)
2 (朱江涛, 黄正宏, 康飞宇, 傅 金, 岳永德, 活性竹炭对苯酚的吸附动力学, 新型碳材料, 23(4), 326(2008))
3 ZHANG Guoyu,WANG Peng, SHI YAN, MA Huijun, HONG Guang, Microwave-induced catalytic oxidation process for treatment of phenol in water with Fe2O3/Al2O3 catalyst, Chinese Journal of Catalysis, 26(7), 597(2005)
3 (张国宇, 王 鹏, 石 岩, 马慧俊, 洪 光, 微波诱导Fe2O3/Al2O3催化剂催化氧化处理水中苯酚, 催化学报, 26(7), 597(2005))
4 YANG Ye,SUN Zhenshi, CHEN Yingxu, Study of phenol and chlorophenol photocatalytic degradation by Nano TiO2 film, Acta Energiae Solaris Sinica, 25(1), 63(2004)
4 (杨 晔, 孙振世, 陈英旭, 纳米TiO2薄膜光催化降解苯酚和氯代苯酚的研究, 太阳能学报, 25(1), 63(2004))
5 Q. Zhou, R. L. Frost, H. P. He, Y. F. Xi,Changes in the surfaces of adsorbed para-nitrophenol on HDTMA organoclay—The XRD and TG study, Journal of Colloid and Interface Science, 307(1), 50(2007)
6 GU Zheng,GAO Manglai, LUO Zhongxin, HU Zhaochao, XUE Guanghai, Preparation of bentonite modified by a series of bis-pyridinium dibromides and their adsorption of phenol for aqueous solution, Bulletin of the Chinese Ceramic Society, 31(5), 1049(2012)
6 (谷 峥, 高芒来, 罗忠新, 胡昭朝, 薛广海, 系列双吡啶盐改性膨润土的制备及其对苯酚的吸附性能研究, 硅酸盐通报, 31(5), 1049(2012))
7 K. Shakir, H. F. Ghoneimy, A. F. Elkafrawy, Sh.G. Beheir, M. Refaat,Removal of catechol from aqueous solutions by adsorption onto organophilic-bentonite, Journal of Hazardous Materials, 150(3), 765(2008)
8 H. Mei, R. L. Zhu,Sorption of 2, 4-Dichlorophenol onto organobentonites: influence of organic cation structure and bentonite layer charge, Adsorption Science & Technology, 29(1), 29(2001)
9 L. Z. Zhu, Y. M. Li, J. Y. Zhang,Sorption of organobentonites to some organic pollutants in Water, Environmental Science & Technology, 31(5), 1407(1997)
10 A. K. Rahardjo, M. J. J. Susanto, A. Kurniawan, N. Indraswati, S. Ismadji,Modified Ponorogo bentonite for the removal of ampicillin from wastewater, Journal of Hazardous Materials, 190(1), 1001(2011)
11 G. Lagaly,Characterization of clays by organic compounds, Clay Miner., 16(1), 1(1981)
12 J. L. Bonczek, W. G. Harris, P. Nkedi-Kizza,Monolayer to bilayer transitional arrangements of hexadecyltrimethylammonium cations on Na-montmorillonite, Clays and Clay Minerals, 50(1), 11(2002)
13 Y. Q. Li,Ishida Hatsuo, Concentration-dependent conformation of alkyl tail in the nanoconfined space: hexadecylamine in the silicate galleries, Langmuir, 19(6), 2479(2003)
14 Xi Yunfei,Ding Zhe, He Hongping, Ray L. Frost, Structure of organoclays-an X-ray diffraction and thermogravimetric analysis study, Journal of Colloid and Interface Science, 277(1), 116(2004)
15 S. Lagergren,About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens Handlingar, 24(4), 1(1898)
16 Ho Yuh-Shan, G. McKay,Pseudo-second order model for sorption processes, Process Biochemistry, 34(5), 451(1999)
17 Langmuir Irving,The constitution and fundamental properties of solids and liquids. II. Liquids. 1, Journal of the American Chemical Society, 39(9), 1848(1917)
18 F. L. Slejko,Adsorption technology-A step-by-step approach to process evaluation and application: Dekker New York; Basel, 1985
19 K. Vijayaraghavan, T.V. N. Padmesh, K. Palanivelu, M. Velan,Biosorption of nickel (II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models, Journal of Hazardous Materials, 133(1), 304(2006)
20 Aharoni Chaim,Ungarish Moshe, Kinetics of activated chemisorption, Part 2.-Theoretical models, J. Chem. Soc., Faraday Trans. 1, 73, 456(1977)
21 Nayak Preeti Sagar,Singh Binay Kumar, Removal of phenol from aqueous solutions by sorption on low cost clay, Desalination, 207(1), 71(2007)
22 B. McBride Murray, Environmental Chemistry of Soils: Oxford University Press, 1994
23 J. Jaycock Michael, G. D. Parfitt, Chemistry of Interfaces: E. Horwood, Halsted Press, 1981
24 W. J. Weber, J. C. Morris,Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89(17), 31(1963)
25 Wu Feng-Chin,Tseng Ru-Ling, Juang Ruey-Shin, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics, Chemical Engineering Journal, 153(1), 1(2009)
26 Juang Ruey-Shin,Wu Feng-Chin, Tseng Ru-Ling, Mechanism of adsorption of dyes and phenols from water using activated carbons prepared from plum kernels, Journal of Colloid and Interface Science, 227(2), 437(2000)
27 B. H. Hameed, I.A.W. Tan, A. L. Ahmad,Adsorption isotherm, kinetic modeling and mechanism of 2, 4, 6-trichlorophenol on coconut husk-based activated carbon, Chemical Engineering Journal, 144(2), 235(2008)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[5] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 李林龙, 杨丽琪, 薛伟海, 高禩洋, 王旭, 段德莉, 李曙. 稀土改性GCr15钢与保持架材料间的滑动摩擦磨损[J]. 材料研究学报, 2023, 37(6): 408-416.
[8] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[11] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[12] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[13] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[14] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[15] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.