Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (5): 339-345    DOI: 10.11901/1005.3093.2013.981
  本期目录 | 过刊浏览 |
钛合金高温短时蠕变与应力松弛的关系研究*
刘坡,宗影影,郭斌,单德彬()
金属精密热加工国家级重点实验室 哈尔滨工业大学材料科学与工程学院 哈尔滨 150001
Relation between Short-term Creep and Stress Relaxation of Titanium Alloy at High Temperature
Po LIU,Yingying ZONG,Bin GUO,Debin SHAN()
(National Key Laboratory for Precision Hot Processing of Metals
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001)
引用本文:

刘坡,宗影影,郭斌,单德彬. 钛合金高温短时蠕变与应力松弛的关系研究*[J]. 材料研究学报, 2014, 28(5): 339-345.
Po LIU, Yingying ZONG, Bin GUO, Debin SHAN. Relation between Short-term Creep and Stress Relaxation of Titanium Alloy at High Temperature[J]. Chinese Journal of Materials Research, 2014, 28(5): 339-345.

全文: PDF(2585 KB)   HTML
摘要: 

蠕变或应力松弛被认为是钛合金板材热成形降低回弹的主要机理。目前对热校形阶段中的蠕变与应力松弛的区别及联系尚缺乏深入研究。本文主要进行了钛合金高温短时蠕变及应力松弛实验, 利用TEM对实验后的显微组织进行了观察。分别研究了温度、应力及时间对蠕变和应力松弛行为的影响规律, 从蠕变率-时间和蠕变-时间角度建立了蠕变与应力松弛之间的联系。研究表明: 钛合金在低温低应力下蠕变以原子扩散为主, 高温高应力下以位错滑移和攀移为主, 而应力松弛在不同温度时均以位错攀移为主要变形机制, 基于蠕变数据预测的应力松弛行为与实验结果符合较好。

关键词 金属材料钛合金蠕变应力松弛蠕变率    
Abstract

Creep or stress relaxation is considered as a main mechanism of reducing the springback of titanium alloy sheet during thermal forming process. So far, the difference and relation between the two phenomena have not been clearly explored. In this paper, tests of short term creep and stress relaxation of Ti6Al4V alloy were conducted at high temperature. The microstructure of the tested alloy was observed by using TEM. Effects of temperature, stress and time on creep and stress relaxation behavior were studied, respectively. The correlation and difference between the two phenomena were compared based on relations of creep strain - time and strain rate - time. Results show that creep behavior is controlled by atom diffusion at low temperature under low stress; by dislocation slide and climb at high temperature under high stress. The stress relaxation behavior is mainly governed by dislocation climb. The predicted stress relaxation behavior based on the creep data shows a good agreement with the experiment.

Key wordsmetallic materials    titanium alloy    creep    stress relaxation    creep rate
收稿日期: 2013-12-30     
基金资助:* 国家自然科学基金面上项目51275132,材料成形与模具技术国家重点实验室开放基金资助项目2011-P11和哈尔滨市科技创新人才研究基金2008RFQXG046资助。
图1  700℃时的蠕变行为
图2  750℃时的蠕变行为
图3  各种条件下蠕变后的TEM像
图4  初始应力为45 MPa时的蠕变行为
图5  初始应力为45 MPa不同温度蠕变后的TEM像
图6  不同温度时的应力松弛曲线
图7  不同应力松弛时间后TEM像
图8  不同温度时的应力-蠕变速率关系曲线
图9  700℃由蠕变与应力松弛获得的蠕变应变与时间关系曲线
图10  经不同应力松弛时间计算的蠕变速率与时间关系
图11  不同温度下应力松弛曲线
1 R. Boyer, G. Welsch, E. W. Collings,Materials Properties Handbook: Titanium Alloys (Ohio, ASM International, 1994)
2 W. D. Brewer, R. K. Bird, T. A. Wallace,Titanium alloys and processing for high speed aircraft, Materials Science and Engineering A, 243, 299(1998)
3 R. R. Boyer,An overview on the use of titanium in the aerospace industry, Materials Science and Engineering A, 213, 103(1996)
4 E. O. Ezugwu, Z M. Wang,Titanium alloys and their machinability-a review, Journal of Materials Processing Technology, 68, 262(1997)
5 E. L. Odenberger, M. Oldenburg, P. Thilderkvist, T. Stoehr, J. Lechler, M. Merklein,Tool development of Ti-6Al-4v sheet with low temperature superplastic properties, Journal of Material Processing and Technology, 211(8), 1324(2011)
6 He Yang,Xiaoguang Fan, Zhichao Sun, Lianggang Guo, Mei Zhan, Recent developments in plastic forming technology of titanium alloys, Science China Technological Sciences, 54(2), 490(2011)
7 Chunxiang Cui,Baomin Hu, Lichen Zhao, Shuangjin Liu, Titanium alloy production technology, market prospects and industry development, Materials and Design, 32, 1684(2011)
8 O. H. Charles,Hot sizing titanium and steel parts, Machinery, 6, 118(1958)
9 XIONG Zhiqing,LIU Zhaorong, Study of the Hot sizing and high temperature mechanical behavior of titanium sheet, Journal of Nanjing University of Aeronautics & Astronautics, (3), 159(1983)
9 (熊志卿, 林兆荣, 钛板热校形及其高温力学性质的研究, 南京航空学院学报, (3), 159(1983))
10 N. K. Sinha, S. Sinha,Stress relaxation at high temperatures and the role of delayed elasticity, Materials Science and Engineering A, 393, 179(2005)
11 K. C. Ho, J. Lin, T. A. Dean,Modelling of springback in creep forming thick aluminum sheets, International Journal of Plasticity, 20, 733(2004)
12 G. B. Viswanathan, S. Karthikeyan, R. W. Hayes, M. J. Mills,Creep behaviour of Ti-6Al-2Sn-4Zr-2Mo: II. mechanisms of deformation, International Journal of Mechanical Sciences, 53, 595(2011)
13 J. Koike, K. Maruyama,Study of primary creep in Ti-6-22-22S alloys, Materials Science and Engineering A, 263, 155(1999)
14 C. Schuh, D. C. Dunand,An overview of power-law creep in polycrystalline β-titanium, Script Materialia, 45, 1415(2011)
15 M. J. R. Barboza, C. M. Neto, C. R. M. Silva,Creep mechanisms and physical modeling for Ti-6Al-4V, Materials Science and Engineering A, 369, 201(2004)
16 Yong Liu,Jingchuan Zhu, Effects of triple heat treatment on stress relaxation resistance of BT20 alloy, Mechanics of Materials, 40, 792(2008)
17 H. LEE, S. MALL,Stress relaxation behavior of shot-peened Ti-6Al-4V under fretting fatigue at elevated temperature, Materials Science and Engineering A, 366, 412(2004)
18 S. K. Reif, K. J. Amberge, D. A. Woodford,Creep design analysis for a thermoplastic from stress relaxation measurements, Materials and Design, (16), 15(1995)
19 H. D. Chandlera,Comparison between steady state creep and stress relaxation in copper, Materials Science and Engineering A, 527, 6219(2010)
20 GUO Jinquan,XUAN Fuzhen, WANG Zhengdong, TU Shandong, Creep Performance Prediction Method Through Short-term Stress Relaxation Tests, Proceedings of the CSEE, 29(11), 92(2009)
20 (郭进全, 轩福贞, 王正东, 涂善东, 基于短时应力松弛试验的蠕变行为预测方法, 中国电机工程学报, 29(11), 92(2009))
21 WANG Mingwei,WANG Chunyan, YANG Jixin, ZHANG Liwen, ZHAO Jie, Study of high temperature stress relaxation behavior of BT20 alloy, Rare Metal Materials And Engineering, 41(3), 502(2012)
21 (王明伟, 王春燕, 杨继新, 张立文, 赵 杰, BT20钛合金高温应力松弛行为研究, 稀有金属材料与工程, 41(3), 502(2012))
22 ZHOU Zhaofeng,CHEN Minghe, FAN Ping, WANG Ronghua, LI Feng, LIN Yao, Numerical simulation on hot sizing of titanium alloy TC4, Journal of Nanjing University of Aeronautics &Astronautics, 41(5), 620(2009)
22 (周兆锋, 陈明和, 范 平, 王荣华, 李 枫, 林 尧, 钛合金TC4热应力校形的数值模拟, 南京航空航天大学学报, 41(5), 620(2009))
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.