Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (5): 346-352    DOI: 10.11901/1005.3093.2013.871
  本期目录 | 过刊浏览 |
超快冷对碳素钢中渗碳体析出强化行为的影响*
王斌,刘振宇(),冯洁,周晓光,王国栋
东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
Effect of Ultra Fast Cooling on Precipitation Behavior of Cementite in Carbon Steels and Its Strengthening Effect
Bin WANG,Zhenyu LIU(),Jie FENG,Xiaoguang ZHOU,Guodong WANG
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, 110819
引用本文:

王斌,刘振宇,冯洁,周晓光,王国栋. 超快冷对碳素钢中渗碳体析出强化行为的影响*[J]. 材料研究学报, 2014, 28(5): 346-352.
Bin WANG, Zhenyu LIU, Jie FENG, Xiaoguang ZHOU, Guodong WANG. Effect of Ultra Fast Cooling on Precipitation Behavior of Cementite in Carbon Steels and Its Strengthening Effect[J]. Chinese Journal of Materials Research, 2014, 28(5): 346-352.

全文: PDF(6537 KB)   HTML
摘要: 

用超快速冷却技术并控制轧后冷却温度, 研究了3种碳含量不同的碳素钢热轧后组织中渗碳体的析出行为和强化机制。结果表明, 在超快速冷却条件下0.04%C和0.5%C(质量分数, 下同)实验钢的主要强化方式分别是细化晶粒和细化珠光体片层间距, 没有纳米级渗碳体颗粒析出, 而在0.17%C实验钢的组织中则有大量弥散的纳米级渗碳体析出, 颗粒直径范围为10-100 nm, 通过超快速冷却技术实现了在不添加微合金元素的条件下纳米级渗碳体的析出。随着超快速冷却终冷温度的降低纳米渗碳体的析出强化作用使0.17%C钢的屈服强度提高110 MPa, 强化效果明显。在超快速冷却的工艺基础上若继续采用形变热处理工艺, 可进一步提高0.17%C实验钢的位错密度, 促进渗碳体均匀形核, 实现纳米级渗碳体颗粒在整个组织中更加均匀弥散的分布, 达到更好的均匀强化效果。在超快速冷却和形变热处理工艺条件下0.17%C钢的屈服强度可达到650 MPa以上, 强化效果提高300 MPa以上。

关键词 金属材料超快速冷却纳米渗碳体析出强化形变热处理    
Abstract

The effect of ultra fast cooling (UFC) during hot strip rolling on the precipitation behavior of cementite in carbon steels and its subsequent strengthening effect have been investigated by controlling the cooling temperatures for three carbon steels with 0.04%,0.17% and 0.5%C respectively. The results show that the refinement of ferrite grains and the reduction of pearlite lamellar spacing might mainly be responsible for the strengthening of the two steels containing 0.04%C and 0.5%C respectively, while no nano-scaled cementite precipitation formed. On the other hand, a large number of nano-scaled cementite precipitates with the size of 10~100 nm formed in the steel with 0.17%C. Therefore, the precipitation of the nanoscaled cementite precipitates could be realized by the UFC process for the plain carbon steel with 0.17%C but with no request for the addition of microalloying elements. Due to the precipitation strengthening of the nanoscaled cementite, the yield strength of the experimental steels with 0.17%C increased with the lowering the finish temperature of the UFC process gradually and typically reached an increment higher than 110MPa. A further thermo mechanical treatment (TMT) after UFC can increase evidently the dislocation density for cementite nucleation, and it will be a feasible way to realize the uniform precipitation of nano-scaled cementite entirely in the microstructure of the steel, thereby further enhancing the strengthening effect. After hot rolling with the UFC and TMT process, the yield strength of the 0.17%C steel may reach a level greater than 650 MPa, in other words, a net increment larger than 300 MPa may be ascribed to the precipitation strengthening effect of nano-scaled cementite.

Key wordsmetallic materials    ultra fast cooling (UFC)    nano-scaled cementite    precipitation strengthening    thermomechanical treatment (TMT)
收稿日期: 2013-11-19     
基金资助:* 中国博士后科学基金2014M551107 和中央高校基本科研业务费专项资金N130307001 资助。
Steel No. C Si Mn P S N Fe
I 0.04 0.19 0.70 0.009 0.002 0.0035 Bal.
II 0.17 0.18 0.70 0.008 0.002 0.0035 Bal.
III 0.50 0.20 0.69 0.010 0.005 0.0041 Bal.
表1  实验用钢的化学成分
图1  超快速冷却条件下0.04%C钢组织中的渗碳体形貌
图2  超快速冷却条件下0.17%C钢组织中的渗碳体形貌
图3  超快速冷却条件下0.5%C钢组织中的渗碳体形貌
图4  0.17%C钢在不同超快速冷却终冷温度条件下的TEM像
图5  超快速冷却终冷温度对0.17%C钢强度的影响
图6  0.17%C钢的断后伸长率
图7  形变热处理后0.17%C钢的组织形貌
图8  形变热处理工艺中UFC终冷温度对0.17%C钢力学性能的影响
图9  在形变热处理工艺中的渗碳体在位错区域析出的TEM像
1 WANG Guodong,The new generation TMCP with the key technology of ultra fast cooling, Shanghai Metal, 30(2), 1(2008)
1 (王国栋, 以超快速冷却为核心的新一代TMCP技术, 上海金属, 30(2), 1(2008))
2 E. V. Pereloma, J. D. Boyd,Effects of simulated on line accelerated cooling processing on transformation temperatures and microstructure in microalloyed steels, Material Science and Technology, 12(12), 1043(1996)
3 J. Fu, G. Q. Li, X. P. Mao, K. M. Fang,Nanoscale cementite precipitates and comprehensive strengthening mechanism of steel, Metallurgical and Materials Transactions A, 42A: 3797(2011)
4 Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda,Development of high strength hot rolled sheet steel consisting of ferrite and nanometer-sized carbides, ISIJ International, 44(11), 1945(2004).
5 H. Kagechika. Production technology of iron steel in Japan during 2006, ISIJ International, 47(6), 773(2007)
6 The technical society, the iron and steel institute of Japan. Production and technology of iron and steel in Japan during 2007, ISIJ International, 48(6), 707(2008)
7 Y. V. Leeuwe, M. Onink, J. Sietsm,The grammar-alpha transformation kinetics of low carbon steel under ultra-fast cooling conditions, ISIJ International, 41(9), 1037(2001).
8 LIU Zongchang, REN Huiping, Diffusion Phase Transformation of Supercooled Austenite (Beijing, Science Press, 2007) p.52
8 (刘宗昌, 任慧平, 过冷奥氏体扩散型相变(北京: 科学出版社, 2007) p.52)
9 WANG Bin,LIU Zhenyu, ZHOU Xiaoguang, WANG Guodong, Calculation of transformation driving force for the precipitation of nano-scaled cementites in the hypoeutectoid steels through ultra fast cooling, Acta Metallurgica Sinica, 49(1), 26(2013)
9 (王 斌, 刘振宇, 周晓光, 王国栋, 超快速冷却条件下亚共析钢中纳米级渗碳体析出的相变驱动力计算, 金属学报, 49(1), 26(2013))
10 D. Rojas, J. Garcia, O. Prat, L. Agudo, C. Carrasco, G. Sauthoff, A.R. Kaysser- Pyzalla,Effect of processing parameters on the evolution of dislocation density and sub-grain size of a 12%Cr heat resistant steel during creep at 650℃, Materials Science and Engineering, 528A, 1372(2011)
11 R. L. Klueh, N. Hashimoto, P. J. Maziasz,Development of new nano-particle-strengthened martensitic steels, Scripta Materialia, 53, 275(2005)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.