Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (1): 8-12    
  研究论文 本期目录 | 过刊浏览 |
PEG/CPB复配改性二氧化铅电极的制备和性能
杨武涛, 杨卫华, 付芳
华侨大学材料科学与工程学院 厦门 361021
Preparation and Characterization of PbO2 Electrode Modified With a Mixture of PEG and CPB
YANG Wutao, YANG Weihua, FU Fang
College of Material Science and Engineering, Huaqiao University, Xiamen 361021
引用本文:

杨武涛 杨卫华 付芳. PEG/CPB复配改性二氧化铅电极的制备和性能[J]. 材料研究学报, 2012, 26(1): 8-12.
, , . Preparation and Characterization of PbO2 Electrode Modified With a Mixture of PEG and CPB[J]. Chin J Mater Res, 2012, 26(1): 8-12.

全文: PDF(884 KB)  
摘要: 用电沉积法制备表面活性剂聚乙二醇(PEG)和溴化十六烷基吡啶(CPB)复配改性PbO2电极, 用SEM、XRD、电化学阻抗谱(EIS)和线性极化扫描(VA)等方法对其微结构和电化学性能进行了表征。结果表明, PEG/CPB复配改性在改善PbO2镀层微结构中产生协同增效作用, 使电极表面颗粒进一步细化均匀; 复配改性电极明显提升了苯酚的催化降解活性, 在2.5 h内对100 mg•L-1苯酚溶液的降解率为98.7%。PEG/CPB复配改性电极电催化活性的提升与电极的活性表面积增大、电化学反应电阻减小和析氧电位的提高有关。
关键词 无机非金属材料二氧化铅电极表面活性剂复配改性电催化    
Abstract:PbO2 electrode modified with a mixture of polyethylene glycol (PEG, non-ionic surfactant) and cetylpyridinium bromide(CPB, cationic surfactant) was prepared by electrodeposition method. The micro-structure and electrochemical properties of the modified electrode were investigated by SEM, XRD, electrochemical impedance spectroscopy (EIS) and liner sweep voltammetry(VA) techniques. Results show that PEG and CPB display synergistic effect in improving the micro-structure of PbO2 coating which refine the crystalline grains of electrode. The combined modification of PEG and CPB can enhance the electro-catalytic activity of PbO2 electrode for phenol degradation, and 98.7% degradation ratio of phenol with an initial concentration of 100 mg·L−1 can be obtained at 2.5 h. The modified electrode has larger active surface area, lower charge-transfer resistance and higher oxygen evolution potential, and these characteristics promote the electro-catalytic activity of the PbO2 electrode for decomposition of organic matter.
Key wordsinorganic non–metallic materials    lead dioxide electrode    surfactant    combined modification    electro–catalysis
收稿日期: 2011-10-09     
ZTFLH: 

O643

 
基金资助:

国家自然科学基金21103055和华侨大学基本科研业务费专项基金JB--ZR1139资助项目。

1 FENG Yujie, LIU Junfeng, CUI Yuhong, Environmental Electrocatalytic Electrode–Structure, Characteristic and Preparation (Beijing, Science Press, 2010) p.3

(冯玉杰, 刘峻峰, 崔玉虹,  环境电催化电极--结构、性能与制备  (北京, 科学出版社, 2010)  p.3)

2 M.Panizza, G.Cerisola, Influence of anode material on the electrochemical oxidation of 2-naphthol, Electrochimica Acta, 48(23), 3491(2003)

3 TONG Shaoping, ZHANG Tieming, MA Chun’an, Oxygen evolution behavior of PTFE–F–PbO2 electrode in H2SO4 solution, Chinese Journal of Chemical Engineering, 16(6), 885(2008)

(童少平, 张铁明, 马淳安, PTFE--F--PbO2电极在H2SO4溶液中的析氧行为, 中国化学工程学报, 16(6), 885(2008))

4 S.Ghasemi, M.F.Mousavi, M.Shamsipur, Electrochemical deposition of lead dioxide in the presence of polyvinylpyrrolidone: A morphological study, Electrochimica Acta, 53(2), 459(2007)

5 FU Fang, YANG Weihua, WANG Honghui, Preparation and performance of Ti-based lead dioxide electrode modified with polyethylene glycol, Journal of Inorganic Materials, 25(6), 653(2010)

(付芳, 杨卫华, 王鸿辉, 聚乙二醇改性钛基PbO2电极的制备及性质研究, 无机材料学报, 25(6), 653(2010))

6 S.Phoka, P.Laokul, E.Swatsitang, V.Promarak, S.Seraphin, S.Maensin, Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route, Materials Chemistry and Physics, 115(1), 423(2009)

7 HUO Chao, FAN Qingming, SHAO Hong, LI Yifan, LIU Huazhang, Catalytic performance of surfactant modified Ru catalysts supported on Ba–doped nano–magnesia for ammonia synthesis, Journal of Chemical Engineering of Chinese Universities, 22(3), 418(2008)

(霍超, 范青明, 邵红, 李一帆, 刘化章, 添加表面活性剂对掺钡纳米氧化镁负载钌基氨合成催化剂性能的影响, 高校化学工程学报, 22(3), 418(2008))

8 LIU Jinyan, HAN Waihui, ZHANG Yan, YAO Chaohuai, Studies on the conductivity of mixed reverse micelles of anionic and non-ionic surfactants, Acta Physico-Chimica Sinicia, 26(6), 1552(2010)

(刘金彦, 韩外慧, 张燕, 姚超怀, 阴离子与非离子表面活性剂复配体系反胶团的电导研究, 物理化学学报, 26(6), 1552(2010))

9 YANG Weihua, FU Fang, YANG Wutao, Effect of polyvinylpyrrolidone on the microstructure and properties of PbO2 electrode, Chinese Journal of Materials Research, 25(2), 199(2011)

(杨卫华, 付芳, 杨武涛, 聚乙烯吡咯烷酮对PbO$_{2}$电极微结构和性能的影响, 材料研究学报, 25(2), 199(2011))

10 M.Sathish, R.P.Viswanath, Electrochemical degradation of aqueous phenols using graphite electrode in a divided electrolytic cell, Korean Journal of Chemical Engineering, 22(3), 358(2005)

11 C.Guo, Y.Zuo, X.H.Zhao, J.M.Zhao, J.P.Xiong, Effects of surfactants on electrodeposition of nickel-carbon nanotubes composite coatings, Surface and Coatings Technology, 202(14), 3385(2008)

12 S.Abaci, U.Tamer, K.Pekmez, A.Yildiz, Electrosynthesis of benzoquinone from phenol on α and β surfaces of PbO2, Electrochimica Acta, 50(18), 3655(2005)

13 X.P.Yang, R.Y.Zou, F.Huo, D.C.Cai, D.Xiao, Preparation and characterization of Ti/SnO2–Sb2O3–Nb2O5/PbO2 thin film as electrode material for the degradation of phenol, Journal of Hazardous Materials, 164(1), 367(2009)

14 LAO Guohong, SHAO Haibo, FAN Yuqian, WANG Jianming, ZHANG Jianqing, CAO Chunan, Catalytic oxidation of sulfide ion over a spherular–Co3O4 electrode, Acta Physico–Chimica Sinicia, 27(3), 627(2011)

(劳国洪, 邵海波, 樊玉欠, 王建明, 张鉴清, 曹楚南, 球形微粒Co3O4电极催化氧化硫离子, 物理化学学报, 27(3), 627(2011))

15 X.P.Zhu, J.R.Ni, H.N.Li, Y.Jiang, X.Xing, A.G.L.Borthwickb, Effects of ultrasound on electrochemical oxidation mechanisms of p-substituted phenols at BDD and PbO2 anodes, Electrochemica Acta, 55(20), 5569(2010)

16 H.L.Liu, Y.Liu, C.Zhang, R.S.Shen, Electrocatalytic oxidation of nitrophenols in aqueous solution using modified PbO2 electrodes, Journal of Applied Electrochemistry, 38(1), 101(2008)

17 H.Usuia, Electrochemical self-assembly synthesis of zinc oxide nanoparticles and lamellar-structured organic/inorganic hybrids by electrodeposition in surfactant solution, Electrochimica Acta, 56(11), 3934(2011)

18 S.P.Tong, C.A.Ma, H.Feng, A novel PbO2 electrode preparation and its application in organic degradation, Electrochimica Acta, 53(6), 3002(2008)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 李海龙, 牟娟, 王媛媛, 葛绍璠, 刘春明, 张海峰, 朱正旺. MnNiCoCrFe多孔高熵合金的电催化析氧性能[J]. 材料研究学报, 2023, 37(5): 332-340.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.