Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (5): 365-370    DOI: 10.11901/1005.3093.2017.156
  研究论文 本期目录 | 过刊浏览 |
用碳热还原法合成镁铁铝复合尖晶石
王彦惠, 陈树江(), 李国华, 田琳, 孙丽杰
辽宁科技大学高温材料与镁资源工程学院 鞍山 114051
Synthesis of Mg-Fe-Al Composite Spinel by Carbon Thermal Reduction Method
Yanhui WANG, Shujiang CHEN(), Guohua LI, Lin TIAN, Lijie SUN
College of High Temperature Materials and Magnesium Resource Engineering, Liaoning University of Science and Technology, Anshan 114051, China
引用本文:

王彦惠, 陈树江, 李国华, 田琳, 孙丽杰. 用碳热还原法合成镁铁铝复合尖晶石[J]. 材料研究学报, 2018, 32(5): 365-370.
Yanhui WANG, Shujiang CHEN, Guohua LI, Lin TIAN, Lijie SUN. Synthesis of Mg-Fe-Al Composite Spinel by Carbon Thermal Reduction Method[J]. Chinese Journal of Materials Research, 2018, 32(5): 365-370.

全文: PDF(1904 KB)   HTML
摘要: 

使用电熔镁砂、板状刚玉和分析纯氧化铁为原料,在1550℃埋石墨条件下高温烧成直径为20 mm厚10 mm的试样。使用X射线衍射仪分析试样的物相组成,使用Highscore Plus软件拟合试样中物相的衍射峰,根据特定晶面的晶面间距计算镁铁铝复合尖晶石的晶格常数和晶胞体积;用重铬酸钾容量法测试试样中氧化亚铁的含量;用扫描电子显微镜分析试样的微观结构;进行热力学计算阐述了镁铁铝复合尖晶石的生成机理。结果表明:制备的两种不同形貌的镁铁铝复合尖晶石,其晶格常数和晶胞体积均比标准卡片中MgO·Al2O3的大且其XRD谱中主强峰向左偏移;少量的MgO和Al2O3被C还原生成镁蒸气和铝蒸气,与CO和O2发生气相沉积反应生成了针状MgO·Al2O3,高温下的液相促进了Al15.99Mg7.64Fe0.37O32相的生成。大量MgO与Al2O3反应生成了粒状MgO·Al2O3,Fe2+和Fe3+扩散进入MgO·Al2O3晶体内生成了Mg8.13Al14.25Fe1.13O32相;用重铬酸钾容量法测出,试样中FeO的含量为2.38%。

关键词 无机非金属材料镁铁铝复合尖晶石碳热还原法镁铝尖晶石重铬酸钾容量法晶格常数    
Abstract

Mg-Fe-Al composite spinel was synthesized via carbon thermal reduction method at 1550℃ with a size of ?20 mm×10 mm. The phase composition and the microstructure of the prepared composite spinel was characterized by X ray diffractometer and scanning electron microscopy respectively. The lattice constant and the unit cell volume of the Mg-Fe-Al composite spinel were calculated by combining the interplanar spacing of the specific crystal plane. Potassium dichromate volumetric method was used to determine the content of ferrous oxide in the composite spinel. Results show that two kinds of Mg-Fe-Al composite spinel with different morphology were produced,of which the lattice constant and unit cell volume are larger than those presented in standard cards for MgO·Al2O3 and the main peaks of which shift to the lower angle side. A small amount of MgO and Al2O3 were reduced by C forming Mg- and Al-vapor, which then react with CO and O2 depositing as acicular MgO·Al2O3. The presence of liquid phase at high temperature promoted the formation of Al15.99Mg7.64Fe0.37O32 phase. A large amount of MgO and Al2O3 reacted directly to form granular MgO·Al2O3, Fe2+ and Fe3+ diffused into MgO·Al2O3 crystallites to form Mg8.13Al14.25Fe1.13O32 phase. The content of FeO in the composite spinel was 2.38% measured by potassium dichromate volumetric method.

Key wordsinorganic non-metallic materials    magnesium-iron-aluminum composite spinel    arbon thermal reduction method    magnesia-alumina spinel    potassium dichromate volumetric method    lattice constant
收稿日期: 2017-06-07     
作者简介:

作者简介 王彦惠,女,1993年生,硕士生

Raw materials MgO SiO2 CaO Al2O3 Fe2O3
Fused magnesia 98.0 0.5 0.7 0.5 0.3
Tabular
corundum
98.5
Analytical
reagent iron oxide
99.5
表1  原料的化学组成(质量分数,%)
图1  试样的XRD图谱
Experimental group a/nm V/×10-6 μm3
Hercynite 8.0911 0.5297
Al15.99Mg7.64Fe0.37O32 8.0897 0.5294
Mg8.13Al14.25Fe1.13O32 8.0885 0.5292
Magnesia-alumina spinel 8.0860 0.5287
表2  试样的晶格常数和晶胞体积表
图2  试样中FeOAl2O3、Al15.99Mg7.64Fe0.37O32、Mg8.13Al14.25-Fe1.13O32主强峰的偏移
图3  试样的SEM照片
Component Mg Al Fe O
16.35 33.02 8.16 42.47
14.65 30.82 13.59 40.94
46.65 9.22 44.13
表3  图3中各点的EDS分析结果
Gases CO N2 CO2 O2
Partial pressure 3.5×104 6.5×104 1.6 4.3×10-12
表4  实验环境中平衡状态下各气相组成的分压
Mg-O2-CO system
Equation Equilibrium partial pressure
Mg(g)+CO(g)=MgO(s)+C(s) (10) lg(PCO/Pθ)=-2.596
Mg(g)+0.5O2(g)= MgO(s) (11) lg(PO2/Pθ)=-20.726
Al-O2-CO system
Equation Equilibrium partial pressure
2Al(g)+3CO(g)=Al2O3(s)+3C(s) (12) lg(PCO/Pθ)=-42.289
2Al(g)+3/2O2(g)=Al2O3(s) (13) lg(PO2/Pθ)=-24.932
表5  Mg-O2-CO和Al-O2-CO体系中的气相分压(1550℃)
图4  1550℃下Mg-O2-CO和Al-O2-CO体系叠加热力学参数状态图
图5  试样中各尖晶石的形成过程
[1] Gambelunghe A, Piccininn R.Primary DNA damage in chrome-plating workers[J]. Toxicology, 2003, 188(2-3): 187
[2] Plaper A, Jenko-brinovec S, Premzl A. Genotoxicity of trivalent chromium in bacterial cells-Possible effects on DNA topology[J]. Chem Res Toxicol, 2002, 15(7): 943
[3] Xie H, Wise S.S, Holmes A. L. Carcinogenic lead chromate induces DNA double-strand breaks in human lung cells[J]. Mutation Research, 2005, 586(2-3): 160
[4] Liao J G.Evolution of chrome free bricks used in cement rotary kiln[J]. Foreign Refractories, 2003, 28(5): 6(廖建国. 水泥回转窑用无铬砖的演变[J]. 国外耐火材料, 2003, 28(5): 6)
[5] Gui M X, translate. Usefulness and existing problems of refractory materials in zirconium system[J]. Foreign Refractories, 2005, 30(4): 57(桂明玺译. 锆系耐火材料的有用性和存在的问题[J]. 国外耐火材料, 2005, 30(4): 57)
[6] Shi S H.Investigation into the reaction mechanism of clinker to chrome-free refractories used in large-scale dry-process cement rotary kiln [D]. Xi'an: Xi'an University of Architecture and Technology, 2006(师素环. 大型干法水泥窑用无铬耐火材料与窑料的反应机理研究 [D]. 西安: 西安建筑科技大学, 2006)
[7] Lee, William E, Moore, et al. Evolution of In-situ Refractories in the 20th Century[J]. Journal of America Ceramic Society, 1998, 81: 1385
[8] Jiang M F, Sun L F, Yu J K.The Development and Application of agnesia-alumina Spinel Refractories[J]. Industrial heating, 2005, 34(2): 56(姜茂发, 孙丽枫, 于景坤. 镁铝尖晶石耐火材料的开发与应用[J]. 工业加热, 2005, 34(2): 56)
[9] Chen Y D.Development tendency of alkaline refractory material for precalciner kiln[J]. Refarctories, 2000, 34(2): 8(陈有德. 预分解窑用碱性耐火衬料的发展动向与趋势[J]. 耐火材料, 2000, 34(2): 8)
[10] Gui M X, translate. Usefulness and existing problems of refractory materials in zirconium system[J]. Foreign Refractories, 2005, 30(4): 57(桂明玺译. 锆系耐火材料的有用性和存在的问题[J]. 国外耐火材料, 2005, 30(4): 57)
[11] Tian X L, Xue C H, Xue Q H, et al.Development of MgO-CaO-ZrO2 refractories in cement rotary kiln[J]. Industrial Furnace. 2011, 33(6): 46(田晓利, 薛崇勃, 薛群虎等. 水泥窑用镁钙锆质耐火材料的发展[J].工业炉, 2011, 33(6): 46)
[12] Jin L P, Xia H, translate. Technical progress of basic furnace materials used in cement rotary kiln[J]. Foreign Refractories, 2005, 30(2): 1(金利萍, 夏辉译. 水泥回转窑用碱性炉材的技术进步[J]. 国外耐火材料, 2005, 30(2): 1)
[13] Qian Z J, Zhu B Q.Trend of Chrome-free Basic Bricks for Cement Rotary Kiln[J]. of Wuhan Uni. of Sci. & Tech.(Natural Science Edition), 2002, 28(1): 16(钱忠俊, 朱伯铨. 水泥回转窑用碱性耐火材料的无铬化[J]. 武汉科技大学学报(自然科学版), 2002, 28(1): 16)
[14] Jiang M X, Li Y, Chen Z Y.Refractory materials [M]. Beijing: Metallurgical industry press, 1998(蒋明学, 李勇, 陈肇友. 耐火材料论文选 [M]. 北京:冶金工业出版社, 1998)
[15] Buchebner G, Molinari T, Harmuth H.Magnesia-hercynite bricks-aninnovative burnt basic refractory. Proceedings of the Sixth UNITECR'99[C]. Berlin, 1999: 201
[16] Ma S L.Reseach on both synthesis of hercynite and application performance of hercynite-containing basic refractory in cement kiln [D]. Beijing: University of Science and Technology Beijing, 2008(马淑龙. 水泥窑用铁铝尖晶石的合成及其碱性制品应用性能研究 [D]. 北京: 北京科技大学, 2008)
[17] Liu H L, Shen J P, LIU X Z, et al.Development of magaesia hercynite brick for burning zone of cementrotary kiln[J]. Refractories, 2004, 38(6): 414(刘会林, 沈建萍, 刘雄章等. 水泥窑烧成带用镁铁铝尖晶石砖的研制[J]. 耐火材料, 2004, 38(6): 414)
[18] Ma S L, Li Y, Sun J L.Effect of MgO on Synthesis and Sintering of Hercynite[J]. Refrectory, 2010, 44(5): 334
[19] Otroj S.Synthesis of Hercynite under Air Atmosphere Using MgAl2O4 Spinel[J]. Materials Science. 2015, 21(2): 288
[20] Guo Z Q, Josef N .Application of MgO-hercynite spinel refractory in cement rotary kiln[J]. China Cement. 2007, 14(5): 63(郭宗奇, JOSEF Nievoll.氧化镁-铁铝尖晶石耐火材料在水泥回转窑中的应用[J]. 中国水泥, 2007, 14(5): 63)
[21] Liu G, Li N, Yan W.Composition and microstructure of a periclase-composite spinel brick used in the burning zone of a cement rotary kiln[J]. Ceram Int, 2014,40(6): 8149
[22] Zhang H B, Li Y, Sun J L.Novel process for synthesis of MgO-Al2O3-FeOn composite materials at low temperature[J]. Journal of The Chinese Ceramic Society, 2015, 43(6): 747(张浩波, 李勇, 孙加林等. 低温合成MgO-Al2O3-FeOn复相材料[J]. 硅酸盐学报. 2015, 43(6): 747)
[23] Liu L F.Quantitative analysis of the Iron Valence State in Magnesia-Iron-Alumina System [D]. Anshan: University of Science and Technology Liaoning, 2016.(刘兰方. 镁铁铝系材料中不同价态铁的定量分析 [D]. 鞍山: 辽宁科技大学, 2016)
[24] Qin H X, Li Y, Sun J L, et al.Reaction Mechanism of Ferro-silicon Nitride-corundum Composite With Carbon Embedded[J]. Journal of The Chinese Ceramic Society, 2014, 42(9): 1184(秦海霞, 李勇, 孙加林等. 埋碳条件下氮化硅铁-刚玉复合材料的反应机理[J]. 硅酸盐学报. 2014, 42(9): 1184)
[25] Chen Z Y.Chemical materials and refractory materials [M]. Beijing: Metallurgical industry press, 2005.(陈肇友. 化学材料与耐火材料 [M]. 北京: 冶金工业出版社, 2005)
[26] Yang Y .Study on thermodynamics of FeOx deoxidization, Fe recycled from steel slag and properties of residue [D]. South China University of Technology, 2013.(杨曜. 钢渣中FeOx还原反应热力学、Fe还原回收效果及余渣性能的研究 [D]. 华南理工大学, 2013)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.