|
|
拉拔和轧制变形铝导线的结构演化及力学与导电性能 |
罗雪梅1, 余虹云2, 李瑞2, 宋竹满1, 王强1, 张哲峰1, 张广平1( ) |
1 中国科学院金属研究所 沈阳 110016 2 国家电网公司电力器材安全性能检测技术实验室 浙江华电器材检测研究所 杭州 310015 |
|
Microstructural Evolution and Mechanical- and Electrical-Property of Cold-Drawn and -Rolled Electrical Aluminum Wires |
Xuemei LUO1, Hongyun YU2, Rui LI2, Zuman SONG1, Qiang WANG1, Zhefeng ZHANG1, Guangping ZHANG1( ) |
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 SGCC-Testing Technology Lab of Electrical Equipment Safety Performance, Zhejiang Huadian Equipment Testing Institute, Hangzhou 310015, China |
引用本文:
罗雪梅, 余虹云, 李瑞, 宋竹满, 王强, 张哲峰, 张广平. 拉拔和轧制变形铝导线的结构演化及力学与导电性能[J]. 材料研究学报, 2018, 32(5): 357-364.
Xuemei LUO,
Hongyun YU,
Rui LI,
Zuman SONG,
Qiang WANG,
Zhefeng ZHANG,
Guangping ZHANG.
Microstructural Evolution and Mechanical- and Electrical-Property of Cold-Drawn and -Rolled Electrical Aluminum Wires[J]. Chinese Journal of Materials Research, 2018, 32(5): 357-364.
[1] | Kiessling F, Nefzger P, Kaintzyk U, et al.Overhead Power Lines: Planning, Design, Construction[M]. Springer, Berlin Heidelberg, 2003 | [2] | Zhang G P, Li M L, Wu X M, et al.Research Progress on Effect of Length Scale on Electrical Resistivity of Metals[J]. Chin J Mater Res, 2014, 28(2): 81(张广平, 李孟林, 吴细毛等. 尺度对金属材料电阻率影响的研究进展[J]. 材料研究学报, 2014, 28(2): 81) | [3] | Wu X M, He Z H, Li C H, et al.Evolution of Drawing Texture for A6 Aluminum Conductor[J]. Chin J Mater Res, 2015, 29(7): 555)(吴细毛, 和正华, 李春和等. 在A6电工铝导线的冷拉拔过程中织构的演变[J]. 材料研究学报. 2015, 29(7): 555) | [4] | Wang W D.Principle and Application of Cable Technology [M]. Beijing: China Machine Press, 2010(王卫东. 电缆工艺技术原理及应用 [M]. 北京: 机械工业出版社, 2011) | [5] | Hurley P J, Humphreys F J.The application of EBSD to the study of substructural development in a cold rolled single-phase aluminium alloy[J]. Actar Mater, 2003, 51(4): | [6] | Hanazaki K, Shigeiri N, Tsuji N.Change in microstructures and mechanical properties during deep wire drawing of copper[J]. Mater Sci Eng, A, 2010, 527(21-22): 5699 | [7] | Saito Y, Tsuji N, Utsunomiya H, et al., Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process[J]. Scr Mater, 1998, 39(9): | [8] | Park K T, Kwon H J, Kim W J, et al., Microstructural characteristics and thermal stability of ultrafine grained 6061 Al alloy fabricated by accumulative roll bonding process[J]. Mater Sci Eng A, 2001, 316(1-2): 145 | [9] | Xing Z P, Kang S B, Kim H W.Microstructural evolution and mechanical properties of the AA8011 alloy during the accumulative roll-bonding process[J]. Metall Mater Trans A, 2002, 33(5): 1521 | [10] | Segal V M, Ferrasse S, Alford F.Tensile testing of ultra fine grained metals[J]. Mater Sci Eng A-Struct Mater Prop Microstruct Process, 2006, 422(1-2): 321 | [11] | Li S, Gazder A A, Beyerlein I J, et al., Microstructure and texture evolution during equal channel angular extrusion of interstitial-free steel: Effects of die angle and processing route[J]. Acta Mater, 2007, 55(3): 1017 | [12] | Lu L.Ultrahigh strength and high electrical conductivity in copper[J]. Science, 2004, 304(5669): 422 | [13] | Liu X C, Zhang H W, Lu K.Strain-induced ultrahard and ultrastable nanolaminated structure in nickel[J]. Science, 2013, 342(6156): 337 | [14] | Wang Q, Wu X M, Li C H, et al.Mechanical Properties of A6 Aluminum Conductor in Drawing Process[J]. Chin J Mater Res, 2013, 27(03): 231(王强, 吴细毛, 李春和等. 拉拔工艺对A6工业纯铝导线力学性能的影响[J]. 材料研究学报, 2013,27(03):231) | [15] | Hosseini S A, Manesh H D.High-strength, high-conductivity ultra-fine grains commercial pure copper produced by ARB process[J]. Mater Design, 2009, 30(8): 2911 | [16] | Habibi A, Ketabchi M, Eskandarzadeh M.Nano-grained pure copper with high-strength and high-conductivity produced by equal channel angular rolling process[J]. J Mater Process Technol, 2011, 211(6): 1085 | [17] | ?etinarslan C S.Effect of cold plastic deformation on electrical conductivity of various materials[J]. Mater Design, 2009, 30(3): 671 | [18] | Ko Y G, Namgung S, Lee B U, et al., Mechanical and electrical responses of nanostructured Cu-3wt%Ag alloy fabricated by ECAP and cold rolling[J]. J Alloy Compd, 2010, 504(S448) | [19] | Han K, Embury J D, Sims J R, et al., The fabrication, properties and microstructure of Cu-Ag and Cu-Nb composite conductors[J]. Mater Sci Eng, A, 1999, 267(1): 99 | [20] | Takata N, Lee S-H, Tsuji N.Ultrafine grained copper alloy sheets having both high strength and high electric conductivity[J]. Mater Lett, 2009, 63(21): 1757 | [21] | Sakai Y, Inoue K, Maeda H.New high-strength, high-conductivity Cu-Ag alloy sheets[J]. Acta Metall. Mater., 1995, 43(4): 1517 | [22] | Raygan S, Mofrad H E, Pourabdoli M, et al., Effect of rolling and annealing processes on the hardness and electrical conductivity values of Cu-13.5%Mn-4%Ni alloy[J]. J Mater Process Technol, 2011, 211(11): 1810 | [23] | Huang C Q.The application and development of aluminum and aluminum alloy for electrical purposes in cable field[J]. Electric Wire Cable, 2013, (02): 4(黄崇祺. 电工用铝和铝合金在电缆工业中的应用与前景[J]. 电线电缆, 2013, (02): 4) | [24] | Kamikawa N, Huang X X, Tsuji N, et al., Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed[J]. Acta Mater, 2009, 57(14): 4198 | [25] | Hughes D A, Hansen N.Microstructure and strength of nickel at large strains[J]. Acta Mater, 2000, 48(11): 2985 | [26] | Kamikawa N, Huang X, Tsuji N, et al., Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed[J]. Acta Mater, 2009, 57(14): 4198 | [27] | Hansen N.Hall-Petch relation and boundary strengthening[J]. Scripta Mater, 2004, 51(8): 801 | [28] | Hansen N.Boundary strengthening in undeformed and deformed polycrystals[J]. Mater Sci Eng, A, 2005, 409(1-2): | [29] | Matthiessen A, Vogt C. On the influence of temperature on the electric conducting-power of alloys [J]. Philos Trans R Soc London, 1864, 154: 167 | [30] | Murashkin M Y, Sabirov I, Sauvage X, et al., Nanostructured Al and Cu alloys with superior strength and electrical conductivity[J]. J Mater Sci, 2016, 51(1): 33 | [31] | Botcharova E, Freudenberger J, Schultz L.Mechanical and electrical properties of mechanically alloyed nanocrystalline Cu-Nb alloys[J]. Acta Mater, 2006, 54(12): 3333 | [32] | Andrews P V, West M B, Robeson C R.The effect of grain boundaries on the electrical resistivity of polycrystalline copper and aluminium[J]. Philos Mag, 1969, 19(161): 887 | [33] | Brown R A.A dislocation model of grain boundary electrical resistivity[J]. Journal of Physics F: Metal Physics, 1977, 7(8): 1477 | [34] | Nakamichi I. Electrical resistivity and grain boundaries in metals[J]. Mater Sci Forum, 1996, 207-209(1): 47 | [35] | Hong S I, Hill M A.Mechanical stability and electrical conductivity of Cu-Ag filamentary microcomposites[J]. Mater Sci Eng, A, 1999, 264(1-2): 151 | [36] | Mayadas A F, Shatzkes M.Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces[J]. Phys Rev B, 1970, 1(4): 1382 | [37] | César M, Liu D, Gall D, et al., Calculated Resistances of Single Grain Boundaries in Copper[J]. Phys Rev Appl, 2014, 2(4): 044007 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|