Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (1): 1-7    DOI: 10.11901/1005.3093.2021.231
REVIEWS Current Issue | Archive | Adv Search |
Material Science Mechanism for Efficient Protection of Natural Armor
ZHAO Ning1,2, JIAO Da2, ZHU Yankun2, LIU Dexue1, LIU Zengqian2(), ZHANG Zhefeng2()
1.School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZHAO Ning, JIAO Da, ZHU Yankun, LIU Dexue, LIU Zengqian, ZHANG Zhefeng. Material Science Mechanism for Efficient Protection of Natural Armor. Chinese Journal of Materials Research, 2022, 36(1): 1-7.

Download:  HTML  PDF(10849KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Three common structural characteristics of natural armor materials and their strengthening and toughening related intrinsic mechanism were summarized, and three typical biomechanical effects, including gradient structure orientation effect, in-situ structure reorientation effect and multistage "suture" interface effect were also summarized, and the corresponding structural optimization design principles of biomimetic materials were proposed. The constant improvement of biomechanics theory and the comprehensive application of various biomimetic structures are beneficial to solve practical engineering problems with new biomimetic materials.

Key words:  review      other disciplines of the materials science      bioinspired design      natural biological materials      structural orientation      gradient      interface     
Received:  15 April 2021     
ZTFLH:  TB39  
Fund: National Key R & D Program of China(2020YFA0710404);National Natural Science Foundation of China(51871216);Youth Innovation Promotion Association(2019191);Liaoning Revitalization Talents Program(XLYC1907058)
About author:  ZHANG Zhefeng, Tel: (024)23971043, E-mail: zhfzhang@imr.ac.cn
LIU Zengqian, Tel: (024)83970116, E-mail: zengqianliu@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.231     OR     https://www.cjmr.org/EN/Y2022/V36/I1/1

Fig.1  Typical armor materials in nature (a) pangolin scale[21], (b) Arapaima gigas fish scale[22], (c) turtle carapace, (d) alligator osteoderm and (e) boxfish scute
Fig.2  Gradient structural orientation in natural biological materials and its underlying strengthening and toughening mechanisms (a) continuously varying structural orientations in the pangolin scale, as indicated by the black dashed curve[21]; (b) variations in the normalized mechanical properties as a function of the relative position from surface to interior in the composite[30]; (c) contours of the equivalent von Mises stress in the composites with different structural orientations under indentation loading based on finite element analysis simulation[30]
Fig.3  Adaptive structural reorientation and its underlying strengthening and toughening mechanism (a) the inclination of the composite structure with respect to the loading axis decreases under tension and increases under compression; (b) rotation of mineralized collagen fibrils with differing original orientations as a function of the macroscopic tissue strain during the tensile test of the Arapaima gigas fish scale[22]; (c) variations in the Young’s modulus, strength, and fracture toughness of composite with strain caused by structural reorientation during tensile deformation[40]; (d) increased resistance to local and global buckling and improved splitting toughness of composite as a result of structural reorientation during compressive deformation[40]
Fig.4  Hierarchical suture interfaces and its interfacial toughening mechanisms (a) typical suture interfaces in leatherback turtle carapace [23], alligator osteoderm[24] and boxfish scute[26]; (b) dependence of the ratio between the effective stress-intensity driving forces for crack deflection and penetration with the angle of crack inclination with respect to the interface. The two cracking modes are illustrated in the insets[46]; (c) effects of structural hierarchy on the cracking resistance of suture interfaces[46]; (d) schematic illustrations about the interfacial toughening effect of suture interface compared to straight interface[46]
1 Liu Z Q, Zhang Z F, Ritchie R O. On the materials science of nature's arms race [J]. Adv. Mater., 2018, 30(32): e1705220
2 Meyers M A, Lin Y S, Olevsky E A, et al. Battle in the Amazon: Arapaima versus Piranha [J]. Adv. Eng. Mater., 2012, 14(5): B279
3 Sherman V R, Quan H, Yang W, et al. A comparative study of piscine defense: the scales of Arapaima gigas, Latimeria chalumnae and Atractosteus spatula [J]. J. Mech. Behav. Biomed. Mater., 2017, 73: 1
4 Munch E, Launey M E, Alsem D H, et al. Tough, bio-inspired hybrid materials [J]. Science, 2008, 322(5907): 1516
5 Launey M E, Chen P Y, McKittrick J, et al. Mechanistic aspects of the fracture toughness of elk antler bone [J]. Acta Biomater., 2010, 6(4): 1505
6 Weaver J C, Milliron G W, Miserez A, et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer [J]. Science, 2012, 336(6086): 1275
7 Meyers M A, McKittrick J, Chen P Y, et al. Structural biological materials: critical mechanics-materials connections [J]. Science, 2013, 339(6121): 773
8 Yang W, Meyers M A, Ritchie R O. Structural architectures with toughening mechanisms in nature: a review of the materials science of type-I collagenous materials [J]. Prog. Mater. Sci., 2019, 103: 425
9 Cao H, Pan H H, Tang R K. Materials enhanced by biomimetic mineralization [J]. Chin. J. Inorg. Chem., 2019, 35(11): 1957
曹 含, 潘海华, 唐睿康. 仿生矿化增强材料 [J]. 无机化学学报, 2019, 35(11): 1957
10 Bruet B J, Song J, Boyce M C, et al. Materials design principles of ancient fish armour [J]. Nat. Mater., 2008, 7(9): 748
11 Jiao D, Liu Z Q, Zhang Z F. Nature weapons: materials science of evolutional "arms race" [J]. Chin. J. Nat., 2019, 41(5): 313
焦 大, 刘增乾, 张哲峰. 自然界"军备竞赛"中的材料科学 [J]. 自然杂志, 2019, 41(5): 313
12 Hu Q L, Li X D, Shen J C. Progress in structure biomimetic materials [J]. Chin. J. Mater. Res., 2003, 17(4): 337
胡巧玲, 李晓东, 沈家骢. 仿生结构材料的研究进展 [J]. 材料研究学报, 2003, 17(4): 337
13 Tan S, Zhang X, Bao C, et al. Preparation and performance of chitosan/sericite composite film with nacre-like structure [J]. Chin. J. Mater. Res., 2016, 30(10): 763
谈 肃, 张 献, 包超等. 仿贝壳结构壳聚糖/绢云母复合薄膜的制备和性能 [J]. 材料研究学报, 2016, 30(10): 763
14 Wang J F, Cheng Q F, Tang Z Y. Layered nanocomposites inspired by the structure and mechanical properties of nacre [J]. Chem. Soc. Rev., 2012, 41(3): 1111
15 Song J R, Fan C C, Ma H S, et al. Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell [J]. Acta Mech. Sin., 2015, 31(3): 364
16 Kamat S, Su X, Ballarini R, et al. Structural basis for the fracture toughness of the shell of the conch Strombus gigas [J]. Nature, 2000, 405(6790): 1036
17 Shin Y A, Yin S, Li X Y, et al. Nanotwin-governed toughening mechanism in hierarchically structured biological materials [J]. Nat. Commun., 2016, 7: 10772
18 Gu G X, Takaffoli M, Buehler M J. Hierarchically-enhanced impact resistance of bioinspired composites [J]. Adv. Mater., 2017, 29(28): 1700060
19 Chen L, Ballarini R, Kahn H, et al. Bioinspired micro-composite structure [J]. J. Mater. Res., 2007, 22(1): 124
20 Yang W, Chen I H, Gludovatz B, et al. Natural flexible dermal armor [J]. Adv. Mater., 2013, 25(1): 31
21 Liu Z Q, Jiao D, Weng Z Y, et al. Structure and mechanical behaviors of protective armored pangolin scales and effects of hydration and orientation [J]. J. Mech. Behav. Biomed. Mater., 2016, 56: 165
22 Zimmermann E A, Gludovatz B, Schaible E, et al. Mechanical adaptability of the Bouligand-type structure in natural dermal armour [J]. Nat. Commun., 2013, 4: 2634
23 Achrai B, Wagner H D. The turtle carapace as an optimized multi-scale biological composite armor - a review [J]. J. Mech. Behav. Biomed. Mater., 2017, 73: 50
24 Sun C Y, Chen P Y. Structural design and mechanical behavior of alligator (Alligator mississippiensis) osteoderms [J]. Acta Biomater., 2013, 9(11): 9049
25 Chen I H, Yang W, Meyers M A. Alligator osteoderms: mechanical behavior and hierarchical structure [J]. Mater. Sci. Eng. C, 2014, 35: 441
26 Yang W, Naleway S E, Porter M M, et al. The armored carapace of the boxfish [J]. Acta Biomater., 2015, 23: 1
27 Liu Z Q, Zhang Z F, Ritchie R O. Structural orientation and anisotropy in biological materials: functional designs and mechanics [J]. Adv. Funct. Mater., 2020, 30(10): 1908121
28 Naleway S E, Porter M M, McKittrick J, et al. Structural design elements in biological materials: application to bioinspiration [J]. Adv. Mater., 2015, 27(37): 5455
29 Yang W, Gludovatz B, Zimmermann E A, et al. Structure and fracture resistance of alligator gar (atractosteus spatula) armored fish scales [J]. Acta Biomater., 2013, 9(4): 5876
30 Liu Z Q, Zhu Y K, Jiao D, et al. Enhanced protective role in materials with gradient structural orientations: lessons from nature [J]. Acta Biomater., 2016, 44: 31
31 Azis S A A, Jauhari I, Ahamad N W. Improving surface properties and wear behaviors of duplex stainless steel via pressure carburizing [J]. Surf. Coat. Technol., 2012, 210: 142
32 Lakhtin Y M, Kogan Y D. Controlled nitriding processes [J]. Met. Sci. Heat Treat., 1978, 20(8): 667
33 Tao N R, Sui M L, Lu J, et al. Surface nanocrystallization of iron induced by ultrasonic shot peening [J]. Nanostruct. Mater., 1999, 11(4): 433
34 Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1(5): 16019
35 Keckes J, Burgert I, Fruhmann K, et al. Cell-wall recovery after irreversible deformation of wood [J]. Nat. Mater., 2003, 2: 810
36 Guerin H A, Elliott D M. Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load [J]. J. Biomech., 2006, 39(8): 1410
37 Saavedra Flores E I, DiazDelaO F A, Ajaj R M, et al. Mathematical modelling of the stochastic mechanical properties of wood and its extensibility at small scales [J]. Appl. Math. Model., 2014, 38(15-16): 3958
38 Weinkamer R, Fratzl P. Mechanical adaptation of biological materials-The examples of bone and wood [J]. Mater. Sci. Eng. C, 2011, 31(6): 1164
39 Sharma A, Thakre S, Kumaraswamy G. Microstructural differences between Viscose and Lyocell revealed by in-situ studies of wet and dry fibers [J]. Cellulose, 2020, 27(3): 1195
40 Liu Z Q, Zhang Y Y, Zhang M Y, et al. Adaptive structural reorientation: developing extraordinary mechanical properties by constrained flexibility in natural materials [J]. Acta Biomater., 2019, 86: 96
41 Jaslow C R. Mechanical properties of cranial sutures [J]. J. Biomech., 1990, 23(4): 313
42 Chen I H, Kiang J H, Correa V, et al. Armadillo armor: mechanical testing and micro-structural evaluation [J]. J. Mech. Behav. Biomed. Mater., 2011, 4(5): 713
43 Saunders W B, Work D M. Shell morphology and suture complexity in upper carboniferous ammonoids [J]. Paleobiology, 1996, 22(2): 189
44 Saunders W B, Work D M, Nikolaeva S V. Evolution of complexity in paleozoic ammonoid sutures [J]. Science, 1999, 286(5440): 760
45 Idei M, Sato S, Watanabe T, et al. Sexual reproduction and auxospore structure in Diploneis papula (Bacillariophyta) [J]. Phycologia, 2013, 52(3): 295
46 Liu Z Q, Zhang Z F, Ritchie R O. Interfacial toughening effect of suture structures [J]. Acta Biomater., 2020, 102: 75
47 Garner S N, Naleway S E, Hosseini M S, et al. The role of collagen in the dermal armor of the boxfish [J]. J. Mater. Res. Technol., 2020, 9(6): 13825
48 Culmone C, Smit G, Breedveld P. Additive manufacturing of medical instruments: a state-of-the-art review [J]. Addit. Manuf., 2019, 27: 461
49 Zhu W, Li J X, Leong Y J, et al. 3D-printed artificial microfish [J]. Adv. Mater., 2015, 27(30): 4411
50 du Plessis A, Broeckhoven C, Yadroitsava I, et al. Beautiful and functional: a review of biomimetic design in additive manufacturing [J]. Addit. Manuf., 2019, 27: 408
51 Ngo T D, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges [J]. Compos. B Eng., 2018, 143: 172
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[4] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[5] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[6] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[7] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[8] JI Hongmei, WANG Xu, LI Xiaowu. Comparative Investigations of in vitro Apatites Depositionin Nacre and Crossed-lamellar Structures in Mollusk Shells[J]. 材料研究学报, 2023, 37(4): 241-247.
[9] LIU Huan, LI Xingfu, YANG Yi, LI Cong, FU Zhengrong, BAI Yunhua, ZHANG Zhenghong, ZHU Xinkun. Room Temperature Work-Hardenning Behavior of a Novel Sandwich Sheet of Cu-Al Alloy with Gradient Structure Surfaces on Both Sides[J]. 材料研究学报, 2023, 37(2): 95-101.
[10] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[11] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[12] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[13] CHENG Hongjie, LIU Huangjuan, JIANG Ting, WANG Fajun, LI Wen. Preparation and Properties of Near-infrared Reflective Superhydrophobic Yellow Coating[J]. 材料研究学报, 2022, 36(9): 687-698.
[14] ZHANG Peng, HUANG Dong, ZHANG Fuquan, YE Chong, WU Xiao, WU Huang. Effect of Graphitization Degree of Mesophase Pitch-based Carbon Fibers on Carbon Fiber/Al Interface Damage[J]. 材料研究学报, 2022, 36(8): 579-590.
[15] YANG Xiaohui, LI Kezhi, BAI Longteng, GUO Yawei. Ablation Properties and Mechanisms of C/ZrC-SiC Composites with Pyrolytic Carbon Interlayer of Different Thickness[J]. 材料研究学报, 2022, 36(7): 489-499.
No Suggested Reading articles found!