Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (8): 579-590    DOI: 10.11901/1005.3093.2021.181
ARTICLES Current Issue | Archive | Adv Search |
Effect of Graphitization Degree of Mesophase Pitch-based Carbon Fibers on Carbon Fiber/Al Interface Damage
ZHANG Peng1, HUANG Dong1,2, ZHANG Fuquan1(), YE Chong1,2, WU Xiao1,2, WU Huang1
1.College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China
2.Hunan Province Engineering Research Center for High Performance Pitch-based Carbon Materials, Hunan Toyi Carbon Material Technology Co. Ltd., Changsha 410006, China
Cite this article: 

ZHANG Peng, HUANG Dong, ZHANG Fuquan, YE Chong, WU Xiao, WU Huang. Effect of Graphitization Degree of Mesophase Pitch-based Carbon Fibers on Carbon Fiber/Al Interface Damage. Chinese Journal of Materials Research, 2022, 36(8): 579-590.

Download:  HTML  PDF(6834KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composite of carbon fiber (Cf) with Al-film (Cf/Al) was constructed by magnetron sputtering with mesophase pitch-based carbon fibers of different graphitization degrees as matrix and Al-plate as sputtering target. Then, the microstructure evolution of Cf /Al interface of the prepared composites was investigated, and the damage mechanism of Cf /Al interface was revealed in comparison to that prepared with polyacrylonitrile carbon fiber. The results show: With the increase of graphitization temperature, the size, the degree of orientation and graphitization of graphite micro-crystallites in mesophase asphalt based carbon fiber increased, whilst both of the reaction degree of Cf /Al interface and the damage of carbon fiber reduced. The damage of Cf /Al interface of the composites prepared with Cf of different graphitization degrees depends on the number of initial defects and the propagation of subsequent cracks in the carbon fiber. The graphitization treatment at 2400℃ and 2700℃ could facilitate the crack propagation through graphite micro-lamellas located in between mesophase asphalt-based carbon fibers, however after removing the Al-coating, the fiber damage was 5.19% and 3.70% higher than that of polyacrylonitrile carbon fiber respectively. After graphitization at 3000℃, the mesophase bituminous carbon fiber with higher chemical inertia could reduce the number of defects generated by interfacial reaction, whilst, after removing the Al-coating, the damage of the fiber was 1.85% lower than that of polyacrylonitrile carbon fiber.

Key words:  composite      interface damage      magnetron sputtering      Cf/Al interface      mesophase pitch-based carbon fiber     
Received:  15 March 2021     
ZTFLH:  TB333  
Fund: National Natural Science Foundation of China(52002104);Special Fund for Innovative Construction of Hunan Province(2020RC3075);Special Fund for Innovative Construction of Hunan Province(2019RS2058);Special Fund for Innovative Construction of Hunan Province(2019GK2021);Special Fund for Innovative Construction of Hunan Province(2020GK4029);Postdoctoral Science Foundation(2020M672480)
About author:  ZHANG Fuquan, Tel: 13907488966, E-mail: zhangfq@hnu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.181     OR     https://www.cjmr.org/EN/Y2022/V36/I8/579

Fiber

Diameter

/μm

Density

/g·cm-3

Tensile strength/GPa
CfMP-24122.111.547
CfMP -27122.152.538
CfMP -30122.212.971
CfPAN71.763.442
Table 1  Properties of carbon fiber
Fig.1  Principal diagram of magnetron sputtering
Fig.2  SEM photographs of surface of carbon fiber CfMP-24 (a), CfMP-27 (c), CfMP-30 (e), CfPAN (g) and transverse section of CfMP-24 (b), CfMP-27 (d), CfMP-30 (f), CfPAN (h)
Fig.3  Raman spectrum of surface (a) and transverse section (b) of carbon fibers
Fig.4  XRD patterns of carbon fibers (a) equatorial scan; (b) meridional scan; (c) azimuthal scan; (d) powder diffraction
Sample2θ(002)/(°)d(002)/nmLc(002)/nmLa(100)/nmg/%Z/(°)
CfMP-2426.080.34138917.20329320.77146030.36163710.87
CfMP-2726.320.33829221.58303231.15918866.3692929.18
CfMP-3026.4010.33731024.2847840.70132477.7854948.67
CfPAN25.180.3533372.243832--35.9
Table 2  Crystalline parameters and degree of graphitization of the different kinds of carbon fibers
Fig.5  HRTEM micrographs of carbon fibers (a) CfMP-24; (b) CfMP-27; (c) CfMP-30; (d) CfPAN
Fig.6  Micromorphology of Al - coated carbon fiber: skin surface of CfMP-24 (a), CfMP-27 (c), CfMP-30 (e), CfPAN (g) and transverse section of CfMP-24 (b), CfMP-27 (d), CfMP-30 (f), CfPAN (h)
Fig.7  Morphologies of Al coated carbon fibers after heated (a) skin surface of CfMP-24, (c) CfMP-27, (e) CfMP-30, (g) CfPAN and (b) transverse section of CfMP-24, (d) CfMP-27, (f) CfMP-30, (h) CfPAN
Fig.8  Morphologies of damaged surface of carbon fibers (a) CfMP-24; (b) CfMP-27; (c) CfMP-30; (d) CfPAN
FiberHeat treatment temperature/℃Tensile strength/GPaStrength loss percentage/%
Before the coating treatmentAfter the coating removed
CfMP16001.440--
CfMP-2424001.5471.4198.27
CfMP-2727002.5382.3666.78
CfMP-2430002.9712.9351.23
CfPAN-3.4423.3363.08
Table 3  Strength loss of carbon fibers
Fig.9  Interfacial damage influence mechanism (a) mechanism of effect of graphitization degree on interfacial reactivity; (b) influence mechanism of carbon fiber microstructure on crack propagation during tensile fracture
1 Liu L T, Sun Y. Research progress of fiber-reinforced aluminum matrix composites [J]. Alum. Fabricat., 2008, (5): 9
刘连涛, 孙 勇. 纤维增强铝基复合材料研究进展 [J]. 铝加工, 2008, (5): 9
2 Sun D W, Zhang G Y, Zhang Q X, et al. Application of graphite fiber reinforced aluminum matrix composite to body tube structure in space remote sensor [J]. Opt. Precis. Eng., 2009, 17: 368
孙德伟, 张广玉, 张其馨 等. 石墨纤维增强铝基复合材料在空间遥感器镜筒结构中的应用 [J]. 光学 精密工程, 2009, 17: 368
3 Zhang D, Zhang G D, Li Z Q. The current state and trend of metal matrix composites [J]. Mater. China, 2010, 29(4): 1
张 荻, 张国定, 李志强. 金属基复合材料的现状与发展趋势 [J]. 中国材料进展, 2010, 29(4): 1
4 Zweben C. Advances in composite materials for thermal management in electronic packaging [J]. JOM, 1998, 50(6): 47
doi: 10.1007/s11837-998-0128-6
5 Li S H, Chao C G. Effects of carbon fiber/Al interface on mechanical properties of carbon-fiber-reinforced aluminum-matrix composites [J]. Metall. Mater. Trans., 2004, 35A: 2153
6 Etter T, Schulz P, Weber M, et al. Aluminium carbide formation in interpenetrating graphite/aluminium composites [J]. Mater. Sci. Eng., 2007, 448A: 1
7 Lee M, Choi Y, Sugio K, et al. Effect of aluminum carbide on thermal conductivity of the unidirectional CF/Al composites fabricated by low pressure infiltration process [J]. Compos. Sci. Technol., 2014, 97: 1
doi: 10.1016/j.compscitech.2014.03.022
8 Liu T T, He X B, Zhang L, et al. Fabrication and thermal conductivity of short graphite fiber/Al composites by vacuum pressure infiltration [J]. J. Compos. Mater., 2014, 48: 2207
doi: 10.1177/0021998313495750
9 Rams J, Ureña A, Escalera M D, et al. Electroless nickel coated short carbon fibres in aluminium matrix composites [J]. Composites, 2007, 38A: 566
10 Chen X W, Qu Y D, Li G L, et al. Effect of matrix alloy elements on microstructure and properties of carbon fiber reinforced aluminum composites [J]. Foundr. Technol., 2018, 39: 1885
陈兴旺, 曲迎东, 李广龙 等. 基体合金元素对碳纤维增强铝基复合材料组织与性能的影响 [J]. 铸造技术, 2018, 39: 1885
11 Shuai T T, Lu B P, Yu H, et al. Fabrication process of laminated woven fiber reinforced aluminum matrix composite by hot pressing diffusion [J]. Speci. Cast. Nonferr. Alloys, 2015, 35: 84
帅甜田, 卢百平, 余 欢 等. 热压扩散法制备层压编织Cf/Al复合材料工艺研究 [J]. 特种铸造及有色合金, 2015, 35: 84
12 Yang S L, Zhuo Y, Yin X F, et al. The interfacial microstructure of CF/Al composites [J]. J. Mater. Eng., 2001, (7): 19
杨盛良, 卓 钺, 尹新方 等. 碳纤维增强铝复合材料的界面微观结构 [J]. 材料工程, 2001, (7): 19
13 Zhao C Z. Correlation between interface reaction and properties of carbon and graphite fibre reinforced aluminium composites [J]. Acta Aeronaut. Astronaut. Sin., 1985, 6: 267
赵昌正. 碳纤维和石墨纤维增强铝复合材料界面反应与性能的关系 [J]. 航空学报, 1985, 6: 267
14 Gao F G, Chi W D, Zhang H X, et al. Development survey and prospect of mesophase pitch-based carbon fiber [J]. Hi-Tech Fiber Appl., 2015, 40(5): 33
高峰阁, 迟卫东, 张鸿翔 等. 国内外MPCF发展概况与展望 [J]. 高科技纤维与应用, 2015, 40(5): 33
15 Huang X S. Fabrication and properties of carbon fibers [J]. Materials, 2009, 2: 2369
doi: 10.3390/ma2042369
16 Frank E, Buchmeiser M R. Carbon fibers [A]. Kobayashi S, Müllen K. Encyclopedia of Polymeric Nanomaterials [C]. Berlin, Heidelberg: Springer, 2014: 306
17 Johnson D J. Structure-property relationships in carbon fibers [J]. J. Phys., 1987, 20D: 286
18 Suzuki T, Umehara H. Pitch-based carbon fiber microstructure and texture and compatibility with aluminum coated using chemical vapor deposition [J]. Carbon, 1999, 37: 47
doi: 10.1016/S0008-6223(98)00186-9
19 Ma Z K, Liu L, Liu J. Effect of spinning process on the oriented structure and thermal conductivity of the mesophase pitch-based graphite fiber [J]. J. Inor. Mater., 2010, 25: 989
马兆昆, 刘 朗, 刘 杰. 纺丝工艺对带形中间相沥青基石墨纤维取向结构及热导率的影响 [J]. 无机材料学报, 2010, 25: 989
20 Qin X Y, Lu Y G, Xiao H, et al. A comparison of the effect of graphitization on microstructures and properties of polyacrylonitrile and mesophase pitch-based carbon fibers [J]. Carbon, 2012, 50: 4459
doi: 10.1016/j.carbon.2012.05.024
21 Pei R S, Chen G Q, Wang Y P, et al. Effect of interfacial microstructure on the thermal-mechanical properties of mesophase pitch-based carbon fiber reinforced aluminum composites [J]. J. Alloys Compd., 2018, 756: 8
doi: 10.1016/j.jallcom.2018.04.330
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
No Suggested Reading articles found!