Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (9): 706-712    DOI: 10.11901/1005.3093.2022.681
ARTICLES Current Issue | Archive | Adv Search |
Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate
LU Yimin1(), MA Lifang2, WANG Hai1, XI Lin1, XU Manman1, YANG Chunlai1
1.School of Mechanical Engineering of Anhui Polytechnic University, Wuhu 241000, China
2.High Overload Ammunition Guidance and Control and Information Perception Laboratory, PLA Army Academy of Artillery and Air Defense, Hefei 230031, China
Cite this article: 

LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate. Chinese Journal of Materials Research, 2023, 37(9): 706-712.

Download:  HTML  PDF(5522KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Carbon-based coatings, similar to diamond-like film, have lower friction, good corrosion resistance, and other excellent properties, which can be used as protective layers in wide fields. A high adhesive strength of the coating or film on the substrate is the critical requirement for application. However, it is impossible to grow carbon-based layers directly on the most of metals like copper, because they have a high mismatch interface. Based on the former researches and the references, the carbon-based complex coatings with three different structures were designed and grown by pulsed laser deposition. Diamond-like carbon and silicon carbide, the carbon-based materials, were deposited as the functional layer and buffer layer respectively, to make composite coatings. The interface with the weakest bonding force in the designed carbon-based complex coating was found by analyzing the micro-structure of the failure interface in the peeling coating samples. The results of comparative experiments indented that the silicon carbide layer, which played a key role in enhancing the adhesive property of the carbon-based complex coating grown at the room temperature on the metal copper substrate, could increase the bonding force of the interface between the diamond-like carbon functional layer and the metal titanium transition layer, and reduce the invalid problem of the complex coating due to the inner-stress accumulation in the thick diamond-like carbon film. The carbon-based coating of excellent adhesion could successively be prepared on the metal copper substrate, and the products can pass the relative tests regulated in the subsections ‘3.4.1.1 adhesive force’ and ‘3.4.1.3 moderate friction’ in the national military standard of ‘general specifications for optical films (GJB 2485-95)’. Nano-hardness of the coating on the copper substrate increased by 4 times compared with the bare copper, which enhanced the anti-scratch performance.

Key words:  surface and interface in the materials      carbon-based complex coating      pulsed laser deposition      adhesive property      failure interface diagnosis     
Received:  29 December 2022     
ZTFLH:  TN340.2  
Fund: Scientific Research Project of Universities of Anhui Province(2022AH050982);Start-up Fund for Introductions of AHPU(2022YQQ001);Foundation Sciences of AHPU(Xjky2022008)
Corresponding Authors:  LU Yimin, Tel: 15927643720, E-mail: luyimin_zy@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.681     OR     https://www.cjmr.org/EN/Y2023/V37/I9/706

Structure IMaterialCu substrate/Ti/SiC/DLC

Thickness / μm

Laserpulses (thousand)

0.3/0.4/1.4

12/30/137

Structure IIMaterialCu substrate/Ti/(DLC/SiC)11/DLC

Thickness / μm

Laser pulses (thousand)

0.3/(0.12/0.03)11/0.12

12/(11.8/2.3)11/11.8

Structure IIIMaterialCu substrate/Ti/SiC/(DLC/SiC)11/DLC

Thickness / μm

Laser pulses (thousand)

0.3/0.4/(0.12/0.03)11/0.12

12/30/(11.8/2.3)11/11.8

Table 1  Structure design of the multilayer carbon-based complex coatings
Fig.1  Facula on the target surface
Fig.2  Cracking pattern of carb-based complex coating with structure I
Fig.3  XPS survey (a) and Ti2p peak (b) of the exposed surface of carbon-based complex coating with structure II
Fig.4  XPS survey (a) and C1s peak (b) of surface of the carbon-based complex coating with structure III
Fig.5  Raman spectroscopies of single DLC layer (a), single SiC layer (b), and alternating DLC/SiC film (c)
Fig.6  Load-depth (a) and hardness-depth curves (b) of carbon-based complex coating
1 Xue Q J, Wang L J. Thin Film Materials of Carbon-based Diamond-like Carbon [M]. Beijing: Science Press, 2012
薛群基, 王立平. 类金刚石碳基薄膜材料 [M]. 北京: 科学出版社, 2012
2 Cui L, Sun L L, Guo P, et al. Effect of deposition time on structure and performance of diamond-like carbon films on PEEK [J]. Chin. J. Mater. Res., 2022, 36(11): 801
doi: 10.11901/1005.3093.2021.315
崔 丽, 孙丽丽, 郭 鹏 等. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响 [J]. 材料研究学报, 2022, 36(11): 801
3 Maerten T, Oltra R, Jaoul C, et al. Investigation of diamond-like carbon coated steel corrosion: enhancing the optical detection of defects by a controlled electrochemical activation [J]. Surf. Coat. Technol., 2019, 363: 344
doi: 10.1016/j.surfcoat.2019.02.050
4 Zhou Y, Kong C C, Li X W, et al. Effect of Ti/Al transition layer on properties of Co-doped diamond-like carbon films [J]. Surf. Technol., 2019, 48(1): 268
周 永, 孔翠翠, 李晓伟 等. Ti/Al过渡层对共掺杂类金刚石薄膜性能的影响 [J]. 表面技术, 2019, 48(1): 268
5 Tillmann W, Dias N F L, Stangier D, et al. Tribo-mechanical properties and adhesion behavior of DLC coatings sputtered onto 36NiCrMo16 produced by selective laser melting [J]. Surf. Coat. Technol., 2020, 394: 125748
doi: 10.1016/j.surfcoat.2020.125748
6 Kabir M S, Zhou Z F, Xie Z H, et al. Designing multilayer diamond like carbon coatings for improved mechanical properties [J]. J. Mater. Sci. Technol., 2021, 65: 108
doi: 10.1016/j.jmst.2020.04.077
7 Wang K L, Zhou H, Zhang K F, et al. Effects of Ti interlayer on adhesion property of DLC films: a first principle study [J]. Diam. Relat. Mater., 2021, 111: 108188
doi: 10.1016/j.diamond.2020.108188
8 Shao W, Zhou Y F, Rao L X, et al. Effect of Cr doping on interface properties of DLC/CrN composite coatings: first-principles study [J]. Diam. Relat. Mater., 2022, 121: 108721
doi: 10.1016/j.diamond.2021.108721
9 Zhou Y F, Li L L, Hu T S, et al. Role of TiC nanocrystalline and interface of TiC and amorphous carbon on corrosion mechanism of titanium doped diamond-like carbon films: exploration by experimental and first principle calculation [J]. Appl. Surf. Sci., 2021, 542: 148740
doi: 10.1016/j.apsusc.2020.148740
10 Sui X D, Liu J Y, Zhang S T, et al. Microstructure, mechanical and tribological characterization of CrN/DLC/Cr-DLC multilayer coating with improved adhesive wear resistance [J]. Appl. Surf. Sci., 2018, 439: 24
doi: 10.1016/j.apsusc.2017.12.266
11 Sui X D, Wang X Y, Zhang S T, et al. Nano-twisted double helix carbon debris improves the wear resistance of ultra-thick diamond-like carbon coatings [J]. Adv. Mater. Interfaces, 2020, 7(20): 2000857
doi: 10.1002/admi.v7.20
12 Zhou J. The interface design and properties of diamond-like carbon films with high adhesion strength deposited on aluminum ally [D]. Shanghai: Shanghai University, 2020
周 佳. 铝合金/类金刚石薄膜的强结合界面设计与性能研究 [D]. 上海: 上海大学, 2020
13 Yang F E, Gao M B, Zhang J, et al. Preparation and tribological properties of diamond-like-carbon/CN x multilayer films with symmetrical nitrogen-content gradient [J]. J. Chin. Ceram. Soc., 2021, 49(10): 2154
杨芳儿, 高蔓斌, 张 继 等. 类金刚石/对称N-梯度CN x 多层膜的制备及摩擦性能 [J]. 硅酸盐学报, 2021, 49(10): 2154
14 Zheng X H, Liu T, Yang S Y, et al. Microstructure and tribological behavior of magnetron sputtered WS x /W/DLC/W multilayer films [J]. Rare Met. Mater. Eng., 2020, 49(4): 1295
郑晓华, 刘 涛, 杨烁妍 等. 磁控溅射WS x /W/DLC/W 多层膜的微观结构及摩擦学性能 [J]. 稀有金属材料与工程, 2020, 49(4): 1295
15 Li F Q, Lin S S, Lin K S, et al. Preparation of CrN/DLC composite thin film and study on its tribological property [J]. Electroplat. Finish., 2017, 36(1): 25
李福球, 林松盛, 林凯生 等. CrN/DLC复合薄膜的制备及其摩擦学性能研究 [J]. 电镀与涂饰, 2017, 36(1): 25
16 Cao H S, Ye X, Li H, et al. Microstructure, mechanical and tribological properties of multilayer Ti-DLC thick films on Al alloys by filtered cathodic vacuum arc technology [J]. Mater. Des., 2021, 198: 109320
doi: 10.1016/j.matdes.2020.109320
17 Harigai T, Tamekuni K, Iijima Y, et al. Wear-resistive and electrically conductive nitrogen-containing DLC film consisting of ultra-thin multilayers prepared by using filtered arc deposition [J]. Jpn. J. Appl. Phys., 2019, 58(SE): SEED05
doi: 10.7567/1347-4065/ab1472
18 Wu Y X, Liu Y L, Liu Y, et al. Structure and tribological properties of Si/a-C:H(Ag) multilayer film in stimulated body fluid [J]. Chin. Phys. B, 2020, 29(11): 116101
doi: 10.1088/1674-1056/ab9c10
19 Narguess N, Penkovc O V, Kim D E. Superior surface protection governed by optimized interface characteristics in WC/DLC multilayer coating [J]. Surf. Coat. Technol., 2020, 385: 125446
doi: 10.1016/j.surfcoat.2020.125446
20 Penkov O V, Khadem M, Lee J S, et al. Highly durable and biocompatible periodical Si/DLC nanocomposite coatings [J]. Nanoscale, 2018, 10: 4852
doi: 10.1039/c7nr06762c pmid: 29473931
21 Li A, Chen Q C, Wu G Z, et al. Effect of the variation of film thickness on the properties of multilayered Si-doped diamond-like carbon films deposited on SUS 304, Al and Cu substrates [J]. J. Mater. Eng. Perform., 2020, 29(12): 8473
doi: 10.1007/s11665-020-05310-x
22 Sun A L, Qin W Y, Liu Y, et al. Effect of titanium plating on cemented carbide substrate tointerfacial transition layer and properties of PcBN composite sheet [J]. Superhard Mater. Eng., 2021, 33(4): 1
孙爱玲, 覃伟源, 刘 洋 等. 硬质合金基底镀钛对PcBN复合片界面过渡层及性能的影响 [J]. 超硬材料工程, 2021, 33(4): 1
23 Lee Y B, Kim B Y, Park H W. Oxygen-scavenging effects of added Ti layer in the TiN gate of metal-ferroelectric-insulator-semiconductor capacitor with Al-doped HfO2 ferroelectric film [J]. Adv. Electron. Mater., 2022, 8(11): 2200310
doi: 10.1002/aelm.v8.11
24 Chinh V D, Broggi A, Di Palma L, et al. XPS spectra analysis of Ti2+, Ti3+ ions and dye photodegradation evaluation of titania-silica mixed oxide nanoparticles [J]. J. Electron. Mater., 2018, 47: 2215
doi: 10.1007/s11664-017-6036-1
25 Wei H S, Xie K, Zhang J, et al. In situ growth of NixCu1-x alloy nanocatalysts on redox-reversible rutile (Nb, Ti)O4 towards high-temperature carbon dioxide electrolysis [J]. Sci. Rep., 2014, 4: 5156
doi: 10.1038/srep05156
26 Lei L, Bolzoni L, Yang F. High thermal conductivity and strong interface bonding of a hot-forged Cu/Ti-coated diamond composite [J]. Carbon, 2020, 168: 553
doi: 10.1016/j.carbon.2020.07.001
27 Hao Z K, Chen Q, Dai W R, et al. Oxygen-deficient blue TiO2 for ultrastable and fast lithium storage [J]. Adv. Energy Mater., 2020, 10: 1903107
doi: 10.1002/aenm.v10.10
28 Shim J W, Bae I H, Jeong M H, et al. Effects of a titanium dioxide thin film for improving the biocompatibility of diamond-like coated coronary stents [J]. Met. Mater. Int., 2020, 26(10): 1455
doi: 10.1007/s12540-019-00424-x
29 Li X W, Li L, Zhang D, et al. Ab initio study of interfacial structure transformation of amorphous carbon catalyzed by Ti, Cr, and W transition layers [J]. ACS Appl. Mater. Interfaces, 2017, 9(47): 41115
doi: 10.1021/acsami.7b12179
30 Neuville S, Matthews A. A perspective on the optimisation of hard carbon and related coatings for engineering applications [J]. Thin Solid Films, 2007, 515(17): 6619
doi: 10.1016/j.tsf.2007.02.011
31 Jiang T. Research and development status and trend of the Ti-Si intermetallics compounds/ceramics matrix composites [J]. China Ceram. Ind., 2022, 29(5): 45
江 涛. Ti-Si金属间化合物/陶瓷复合材料的研究发展现状与发展趋势 [J]. 中国陶瓷工业, 2022, 29(5): 45
32 Lin Q J, Yang S M, Wang C Y, et al. Multifractal analysis for Cu/Ti bilayer thin films [J]. Surf. Interface Anal., 2013, 45(8): 1223
doi: 10.1002/sia.v45.8
33 Xue H T, Wei X, Guo W B, et al. First principle calculation of the binding mechanism between Ti and SiO2 [J]. Trans. China Weld. Inst., 2020, 41(1): 67
薛海涛, 魏 鑫, 郭卫兵 等. 活性元素Ti和SiO2界面结合机制的第一性原理计算 [J]. 焊接学报, 2020, 41(1): 67
doi: 10.12073/j.hjxb.20190712001
34 Kuntani Y, Goto D, Maekawa K, et al. Mechanical shock-induced self-propagating exothermic reaction in Ti/Si multilayer nanofilms for low-power reactive bonding [J]. Jpn. J. Appl. Phys., 2020, 59(SI): SIIL09
doi: 10.35848/1347-4065/ab827f
35 Wang J, Liu G C, Wang L D, et al. Studies of diamond-like carbon(DLC) films deposited on stainless steel substrate with Si/SiC intermediate layers [J]. Chin. Phys. B, 2008, 17(8): 3108
doi: 10.1088/1674-1056/17/8/057
36 Xu P, Wang Y, Cao X Q, et al. The tribological properties of DLC/SiC and DLC/Si3N4 under different relative humidity: the transition from abrasive wear to tribo-chemical reaction [J]. Ceram. Int., 2021, 47: 3901
doi: 10.1016/j.ceramint.2020.09.252
37 Gao J, Wang Y, Wu H H, et al. Construction of a sp3/sp2 carbon interface in 3D N-doped nanocarbons for the oxygen reduction reaction [J]. Angew. Chem. Int. Ed., 2019, 58(42): 15089
doi: 10.1002/anie.v58.42
38 Nakashima S I, Mitani T, Tomobe M, et al. Raman characterization of damaged layers of 4H-SiC induced by scratching [J]. AIP Adv., 2016, 6(1): 015207
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[3] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[4] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[5] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[6] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[7] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[8] LI Rui, WANG Hao, ZHANG Tiangang, NIU Wei. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. 材料研究学报, 2022, 36(1): 62-72.
[9] LI Xiuxian, QIU Wanqi, JIAO Dongling, ZHONG Xichun, LIU Zhongwu. Promotion Effect of α-Al2O3 Seeds on Low-temperature Deposition of α-Al2O3 Films by Reactive Sputtering[J]. 材料研究学报, 2022, 36(1): 8-12.
[10] FAN Jinhui, LI Pengfei, LIANG Xiaojun, LIANG Jiangping, XU Changzheng, JIANG Li, YE Xiangxi, LI Zhijun. Interface Evolution During Rolling of Ni-clad Stainless Steel Plate[J]. 材料研究学报, 2021, 35(7): 493-500.
[11] ZHANG Huichen, QI Xuelian. Super Low Friction Characteristics Initiated by Running-in Process in Water-based Lubricant for Ti-Alloy[J]. 材料研究学报, 2021, 35(5): 349-356.
[12] LIU Fuguang, CHEN Shengjun, PAN Honggen, DONG Peng, MA Yingmin, HUANG Jie, YANG Erjuan, MI Zihao, WANG Yansong, LUO Xiaotao. Thermally Sprayed Thermal Barrier Coating of MCrAlY/8YSZ with Hybrid Microstructure and Its Spallation Resistance[J]. 材料研究学报, 2021, 35(4): 313-320.
[13] TANG Changbin, NIU Hao, HUANG Ping, WANG Fei, ZHANG Yujie, XUE Juanqin. Electrosorption Characteristics of NF/PDMA /MnO2-Co Capacitor Electrode for Pb2+ in a Dilute Solution of Lead Ions[J]. 材料研究学报, 2021, 35(2): 115-127.
[14] XU Wencui, LIN Yingzheng, SHAO Zaidong, ZHENG Yuming, CHENG Xuan, ZHONG Lubin. Facile Preparation of Electrospun Carbon Nanofiber Aerogels for Oils Absorption[J]. 材料研究学报, 2021, 35(11): 820-826.
[15] PENG Haoping, XI Shiheng, CUI Derong, LIU Ya, DENG Song, SU Xuping, RUAN Ruiwen. Effect of Mn on Wetting Behavior of X80 Steel in Molten Zn-Mn Alloy[J]. 材料研究学报, 2021, 35(10): 785-794.
No Suggested Reading articles found!