|
|
Material Science Mechanism for Efficient Protection of Natural Armor |
ZHAO Ning1,2, JIAO Da2, ZHU Yankun2, LIU Dexue1, LIU Zengqian2( ), ZHANG Zhefeng2( ) |
1.School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
ZHAO Ning, JIAO Da, ZHU Yankun, LIU Dexue, LIU Zengqian, ZHANG Zhefeng. Material Science Mechanism for Efficient Protection of Natural Armor. Chinese Journal of Materials Research, 2022, 36(1): 1-7.
|
Abstract Three common structural characteristics of natural armor materials and their strengthening and toughening related intrinsic mechanism were summarized, and three typical biomechanical effects, including gradient structure orientation effect, in-situ structure reorientation effect and multistage "suture" interface effect were also summarized, and the corresponding structural optimization design principles of biomimetic materials were proposed. The constant improvement of biomechanics theory and the comprehensive application of various biomimetic structures are beneficial to solve practical engineering problems with new biomimetic materials.
|
Received: 15 April 2021
|
|
Fund: National Key R & D Program of China(2020YFA0710404);National Natural Science Foundation of China(51871216);Youth Innovation Promotion Association(2019191);Liaoning Revitalization Talents Program(XLYC1907058) |
About author: ZHANG Zhefeng, Tel: (024)23971043, E-mail: zhfzhang@imr.ac.cn LIU Zengqian, Tel: (024)83970116, E-mail: zengqianliu@imr.ac.cn
|
1 |
Liu Z Q, Zhang Z F, Ritchie R O. On the materials science of nature's arms race [J]. Adv. Mater., 2018, 30(32): e1705220
|
2 |
Meyers M A, Lin Y S, Olevsky E A, et al. Battle in the Amazon: Arapaima versus Piranha [J]. Adv. Eng. Mater., 2012, 14(5): B279
|
3 |
Sherman V R, Quan H, Yang W, et al. A comparative study of piscine defense: the scales of Arapaima gigas, Latimeria chalumnae and Atractosteus spatula [J]. J. Mech. Behav. Biomed. Mater., 2017, 73: 1
|
4 |
Munch E, Launey M E, Alsem D H, et al. Tough, bio-inspired hybrid materials [J]. Science, 2008, 322(5907): 1516
|
5 |
Launey M E, Chen P Y, McKittrick J, et al. Mechanistic aspects of the fracture toughness of elk antler bone [J]. Acta Biomater., 2010, 6(4): 1505
|
6 |
Weaver J C, Milliron G W, Miserez A, et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer [J]. Science, 2012, 336(6086): 1275
|
7 |
Meyers M A, McKittrick J, Chen P Y, et al. Structural biological materials: critical mechanics-materials connections [J]. Science, 2013, 339(6121): 773
|
8 |
Yang W, Meyers M A, Ritchie R O. Structural architectures with toughening mechanisms in nature: a review of the materials science of type-I collagenous materials [J]. Prog. Mater. Sci., 2019, 103: 425
|
9 |
Cao H, Pan H H, Tang R K. Materials enhanced by biomimetic mineralization [J]. Chin. J. Inorg. Chem., 2019, 35(11): 1957
|
|
曹 含, 潘海华, 唐睿康. 仿生矿化增强材料 [J]. 无机化学学报, 2019, 35(11): 1957
|
10 |
Bruet B J, Song J, Boyce M C, et al. Materials design principles of ancient fish armour [J]. Nat. Mater., 2008, 7(9): 748
|
11 |
Jiao D, Liu Z Q, Zhang Z F. Nature weapons: materials science of evolutional "arms race" [J]. Chin. J. Nat., 2019, 41(5): 313
|
|
焦 大, 刘增乾, 张哲峰. 自然界"军备竞赛"中的材料科学 [J]. 自然杂志, 2019, 41(5): 313
|
12 |
Hu Q L, Li X D, Shen J C. Progress in structure biomimetic materials [J]. Chin. J. Mater. Res., 2003, 17(4): 337
|
|
胡巧玲, 李晓东, 沈家骢. 仿生结构材料的研究进展 [J]. 材料研究学报, 2003, 17(4): 337
|
13 |
Tan S, Zhang X, Bao C, et al. Preparation and performance of chitosan/sericite composite film with nacre-like structure [J]. Chin. J. Mater. Res., 2016, 30(10): 763
|
|
谈 肃, 张 献, 包超等. 仿贝壳结构壳聚糖/绢云母复合薄膜的制备和性能 [J]. 材料研究学报, 2016, 30(10): 763
|
14 |
Wang J F, Cheng Q F, Tang Z Y. Layered nanocomposites inspired by the structure and mechanical properties of nacre [J]. Chem. Soc. Rev., 2012, 41(3): 1111
|
15 |
Song J R, Fan C C, Ma H S, et al. Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell [J]. Acta Mech. Sin., 2015, 31(3): 364
|
16 |
Kamat S, Su X, Ballarini R, et al. Structural basis for the fracture toughness of the shell of the conch Strombus gigas [J]. Nature, 2000, 405(6790): 1036
|
17 |
Shin Y A, Yin S, Li X Y, et al. Nanotwin-governed toughening mechanism in hierarchically structured biological materials [J]. Nat. Commun., 2016, 7: 10772
|
18 |
Gu G X, Takaffoli M, Buehler M J. Hierarchically-enhanced impact resistance of bioinspired composites [J]. Adv. Mater., 2017, 29(28): 1700060
|
19 |
Chen L, Ballarini R, Kahn H, et al. Bioinspired micro-composite structure [J]. J. Mater. Res., 2007, 22(1): 124
|
20 |
Yang W, Chen I H, Gludovatz B, et al. Natural flexible dermal armor [J]. Adv. Mater., 2013, 25(1): 31
|
21 |
Liu Z Q, Jiao D, Weng Z Y, et al. Structure and mechanical behaviors of protective armored pangolin scales and effects of hydration and orientation [J]. J. Mech. Behav. Biomed. Mater., 2016, 56: 165
|
22 |
Zimmermann E A, Gludovatz B, Schaible E, et al. Mechanical adaptability of the Bouligand-type structure in natural dermal armour [J]. Nat. Commun., 2013, 4: 2634
|
23 |
Achrai B, Wagner H D. The turtle carapace as an optimized multi-scale biological composite armor - a review [J]. J. Mech. Behav. Biomed. Mater., 2017, 73: 50
|
24 |
Sun C Y, Chen P Y. Structural design and mechanical behavior of alligator (Alligator mississippiensis) osteoderms [J]. Acta Biomater., 2013, 9(11): 9049
|
25 |
Chen I H, Yang W, Meyers M A. Alligator osteoderms: mechanical behavior and hierarchical structure [J]. Mater. Sci. Eng. C, 2014, 35: 441
|
26 |
Yang W, Naleway S E, Porter M M, et al. The armored carapace of the boxfish [J]. Acta Biomater., 2015, 23: 1
|
27 |
Liu Z Q, Zhang Z F, Ritchie R O. Structural orientation and anisotropy in biological materials: functional designs and mechanics [J]. Adv. Funct. Mater., 2020, 30(10): 1908121
|
28 |
Naleway S E, Porter M M, McKittrick J, et al. Structural design elements in biological materials: application to bioinspiration [J]. Adv. Mater., 2015, 27(37): 5455
|
29 |
Yang W, Gludovatz B, Zimmermann E A, et al. Structure and fracture resistance of alligator gar (atractosteus spatula) armored fish scales [J]. Acta Biomater., 2013, 9(4): 5876
|
30 |
Liu Z Q, Zhu Y K, Jiao D, et al. Enhanced protective role in materials with gradient structural orientations: lessons from nature [J]. Acta Biomater., 2016, 44: 31
|
31 |
Azis S A A, Jauhari I, Ahamad N W. Improving surface properties and wear behaviors of duplex stainless steel via pressure carburizing [J]. Surf. Coat. Technol., 2012, 210: 142
|
32 |
Lakhtin Y M, Kogan Y D. Controlled nitriding processes [J]. Met. Sci. Heat Treat., 1978, 20(8): 667
|
33 |
Tao N R, Sui M L, Lu J, et al. Surface nanocrystallization of iron induced by ultrasonic shot peening [J]. Nanostruct. Mater., 1999, 11(4): 433
|
34 |
Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1(5): 16019
|
35 |
Keckes J, Burgert I, Fruhmann K, et al. Cell-wall recovery after irreversible deformation of wood [J]. Nat. Mater., 2003, 2: 810
|
36 |
Guerin H A, Elliott D M. Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load [J]. J. Biomech., 2006, 39(8): 1410
|
37 |
Saavedra Flores E I, DiazDelaO F A, Ajaj R M, et al. Mathematical modelling of the stochastic mechanical properties of wood and its extensibility at small scales [J]. Appl. Math. Model., 2014, 38(15-16): 3958
|
38 |
Weinkamer R, Fratzl P. Mechanical adaptation of biological materials-The examples of bone and wood [J]. Mater. Sci. Eng. C, 2011, 31(6): 1164
|
39 |
Sharma A, Thakre S, Kumaraswamy G. Microstructural differences between Viscose and Lyocell revealed by in-situ studies of wet and dry fibers [J]. Cellulose, 2020, 27(3): 1195
|
40 |
Liu Z Q, Zhang Y Y, Zhang M Y, et al. Adaptive structural reorientation: developing extraordinary mechanical properties by constrained flexibility in natural materials [J]. Acta Biomater., 2019, 86: 96
|
41 |
Jaslow C R. Mechanical properties of cranial sutures [J]. J. Biomech., 1990, 23(4): 313
|
42 |
Chen I H, Kiang J H, Correa V, et al. Armadillo armor: mechanical testing and micro-structural evaluation [J]. J. Mech. Behav. Biomed. Mater., 2011, 4(5): 713
|
43 |
Saunders W B, Work D M. Shell morphology and suture complexity in upper carboniferous ammonoids [J]. Paleobiology, 1996, 22(2): 189
|
44 |
Saunders W B, Work D M, Nikolaeva S V. Evolution of complexity in paleozoic ammonoid sutures [J]. Science, 1999, 286(5440): 760
|
45 |
Idei M, Sato S, Watanabe T, et al. Sexual reproduction and auxospore structure in Diploneis papula (Bacillariophyta) [J]. Phycologia, 2013, 52(3): 295
|
46 |
Liu Z Q, Zhang Z F, Ritchie R O. Interfacial toughening effect of suture structures [J]. Acta Biomater., 2020, 102: 75
|
47 |
Garner S N, Naleway S E, Hosseini M S, et al. The role of collagen in the dermal armor of the boxfish [J]. J. Mater. Res. Technol., 2020, 9(6): 13825
|
48 |
Culmone C, Smit G, Breedveld P. Additive manufacturing of medical instruments: a state-of-the-art review [J]. Addit. Manuf., 2019, 27: 461
|
49 |
Zhu W, Li J X, Leong Y J, et al. 3D-printed artificial microfish [J]. Adv. Mater., 2015, 27(30): 4411
|
50 |
du Plessis A, Broeckhoven C, Yadroitsava I, et al. Beautiful and functional: a review of biomimetic design in additive manufacturing [J]. Addit. Manuf., 2019, 27: 408
|
51 |
Ngo T D, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges [J]. Compos. B Eng., 2018, 143: 172
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|