Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (7): 523-534    DOI: 10.11901/1005.3093.2022.145
ARTICLES Current Issue | Archive | Adv Search |
Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate
FENG Ye1,2, CHEN Zhiyong1(), JIANG Sumeng1, GONG Jun1, SHAN Yiyin1, LIU Jianrong1, WANG Qingjiang1()
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate. Chinese Journal of Materials Research, 2023, 37(7): 523-534.

Download:  HTML  PDF(24838KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cyclic oxidation resistance is an essential factor affecting the reliable use of Ti65 Ti-alloy plates in aerospace vehicles. In this paper, the cyclic oxidation resistance of Ti65 plates was investigated by cyclic oxidation testing at 650℃~800℃. The results showed that the NiCrAlSiY coated Ti65 plate was composed of three regions after 500 cycles of oxidation test: coating, diffusion layer, and substrate region. The interface of coating/plate was relatively compact, and the coated plate exhibited a fully antioxidant level. The major oxide on the surface of coated plate was found to be Al2O3, while TiO2 was detected when oxidation temperature increased to 800℃. During cyclic oxidation, the elements diffusion between coating and substrate were mainly Ni and Ti, while the diffusion of a small amount of Cr occurred when temperature increased to 800℃. The inter-diffusion of Ni and Ti were thought to lead to the generation of Ti2Ni and TiNi at coating/plate interface. After cyclic oxidation, the tensile strength retention of both coated and as-received plates were more than 90%, while the elongation of coated plates was only about 30% of the original plates (before cyclic oxidation). The plates without coating were failed by brittle fracture after cyclic oxidation, obviously, the significant reduction of tensile elongation might be due to the brittleness caused by infiltration of oxygen element at high temperature on the plate surface.

Key words:  surface and interface in the materials      Ti65 plate      NiCrAlSiY coating      cyclic oxidation      mechanical properties     
Received:  15 March 2022     
ZTFLH:  TB31  
Fund: National Science and Technology Major Project(J2019-VI-0012-0126);Shenyang Science and Technology Plan Project(20-203-5-31)
Corresponding Authors:  CHEN Zhiyong, Tel: (024)23971586, E-mail: zhiyongchen@imr.ac.cn;

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.145     OR     https://www.cjmr.org/EN/Y2023/V37/I7/523

Fig.1  Size of tensile specimen for plate
Fig.2  Mass change curves of plates after 500 cycles oxidized at 650℃~800℃ (a) coated plates,(b) as-received plates

Oxidation temperature

/℃

Mass gain

/ mg·cm-2

Mean oxidation rate / g·m-2·h-1

Ratio of mean

oxidation rate

(as received / coated)

650Coated0.028570.001718.9
As received0.538490.0322
700Coated0.084520.005111.3
As received0.960320.0575
750Coated0.178970.010711.7
As received2.077780.1244
800Coated0.57140.0342/
As received-1.52976-0.0916
Table 1  Oxidation performance evaluation after 500 cycles oxidized at 650℃~800℃
Fig.3  XRD patterns of surface of coated plates cyclicly oxidized at different temperatures
Fig.4  Microstructure of as-received plates cyclicly oxidized at different temperatures: (a) 650℃; (b) 700℃;(c) 750℃;(d) 800℃
Fig.5  BSE microstructure of coated plates cyclicly oxidized at different temperatures: (a) 650℃; (b) 700℃; (c) 750℃; (d)800℃
Fig. 6  EPMA element distribution in near surface of coated plates cyclicly oxidized at different temperatures: (a) 650℃; (b)700℃; (c) 750℃ and (d) 800℃
Fig.7  BSE microstructure of coating/substrate interface in plate cyclicly oxidized at different temperatures: (a) 650℃; (b)700℃; (c) 750℃; (d) 800℃
Temperature / ℃PositionElementsResult
NiTiAl
650136.6732.8513.78TiNi
230.3859.106.47Ti2Ni
326.2161.665.98Ti2Ni
410.4774.6210.17β phase
700543.6045.846.21TiNi
630.2760.855.75Ti2Ni
727.6463.484.56Ti2Ni
816.1070.987.93β phase
94.0983.119.07α phase
7501043.5950.633.62TiNi
1127.3863.116.11Ti2Ni
1229.7362.855.51Ti2Ni
136.9981.019.31β phase
144.3475.5512.88α phase
151.0681.3813.84α phase
8001628.5259.887.55Ti2Ni
175.2879.6110.03β phase
185.6480.989.11β phase
190.5676.4817.45α phase
200.8179.7315.49α phase
Table2  EDS results (%, atomic fraction) of coating/substrate interface in plate oxidized at different temperature
Fig.8  Schematic diagram of microstructure and element diffusion at interface of coating/substrate: (a) oxidized at 650~750℃; (b) oxidized at 800℃
Fig.9  Hardness distribution of plates cyclicly oxidized at different temperatures: (a) coated plates; (b) as-received plates
Yield strength / MPaUltimate tensile strength / MPaElongation / %
Coated plates after oxidation101210714.2
As-received plate after oxidation105210610.3
As-received plate1076113714.0
Table 3  Room tensile properties of plate after 650℃/500 cycles oxidation
Fig.10  Fracture morphology of plates cyclicly oxidized at 650℃
Fig.11  Fracture morphology and microstructure near the fracture position of plates cyclicly oxidized at 650℃ (a, b) as-received plates; (c, d) coated plates
Fig.12  Schematic diagram of fracture process of as-received and coated plates
1 Wang Q J, Liu J R, Yang R. Current status and prospects of high-temperature titanium alloys [J]. J. Aeronaut. Mater., 2014, 34(4): 1
王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景 [J]. 航空材料学报, 2014, 34(4): 1
2 Wu X Y, Chen Z Y, Chen C, et al. Effects of heat treatment on microstructure, texture and tensile properties of Ti65 alloy [J]. Chin. J. Mater. Res., 2019, 33(10): 785
doi: 10.11901/1005.3093.2019.110
吴汐玥, 陈志勇, 程 超 等. 热处理对Ti65钛合金板材的显微组织、织构及拉伸性能的影响 [J]. 材料研究学报, 2019, 33(10): 785
doi: 10.11901/1005.3093.2019.110
3 Gou M M, Bai R M, Meng L J, et al. Effect of strain rate on room temperature tensile properties of titanium alloys [J]. Hunan Nonferrous Met., 2020, 36(01): 52
苟曼曼, 白瑞敏, 孟利军 等. 应变速率对钛合金室温拉伸性能的影响 [J]. 湖南有色金属, 2020, 36(01): 52
4 Han R, Naeem ul H, Li J Y, et al. A novel phosphate-ceramic coating for high temperature oxidation resistance of Ti65 alloys [J]. Ceram. Int, 2019, 45(18): 23895
doi: 10.1016/j.ceramint.2019.06.218
5 Tang Z, Niewolak L, Shemet V, et al. Development of oxidation resistant coatings for gamma-TiAl based alloys [J]. Mater. Sci. Eng. A, 2002, 328: 297
doi: 10.1016/S0921-5093(01)01734-8
6 Gauthier V, Dettenwanger F, Schutze M. Oxidation behavior of gamma-TiAl coated with zirconia thermal barriers [J]. Intermetallics, 2002, 10(7): 667
doi: 10.1016/S0966-9795(02)00036-5
7 Wang H Y, An Y Q, Li C Y, et al. Research progress of Ni-based superalloys [J]. Materials Reports, 2011, 25(S2): 482
王会阳, 安云岐, 李承宇 等. 镍基高温合金材料的研究进展 [J]. 材料导报, 2011, 25(S2): 482
8 Yao J J, Gao L K, Deng B, et al. Technological progress of Ni-based superalloys [J]. Adv. Mater. Ind., 2015, 12: 43
姚进军, 高联科, 邓 斌. 镍基高温合金的技术进展 [J]. 新材料产业, 2015, 12: 43
9 Zhang J, Wang L N, Peng Y T, et al. Characterization of Hf-doped CoCrAlYSi coatings synthesized by laser cladding on Ni-based GH586 alloy [J]. J. Vac. Sci. Technol., 2020, 40(03): 203
张 静, 王丽娜, 彭玉涛 等. 镍基高温合金表面激光熔覆CoCrAlYSiHfx涂层组织性能分析 [J]. 真空科学与技术学报, 2020, 40(03): 203
10 Zhang X G, Deng C G, Deng C M, et al. Oxidation resistance and microstructural evolution of NiCrAlY coatings during oxidation [J]. J. Aeronaut. Mater., 2015, 35(05): 21
张新格, 邓畅光, 邓春明 等. NiCrAlY涂层抗氧化性及氧化过程中的微观结构演变 [J]. 航空材料学报, 2015, 35(05): 21
11 Khakzadian J, Hosseini S H, Madar K Z. Cathodic arc deposition of NiCrAlY coating: oxidation behaviour and thermodynamic [J]. Surf. Eng., 2019, 35(08): 677
doi: 10.1080/02670844.2018.1564474
12 Pereira J C, Zambrano J, Rayón E, et al. Mechanical and microstructural characterization of MCrAlY coatings produced by laser cladding: The influence of the Ni, Co and Al content [J]. Surf. Coat. Technol., 2018, 338: 22
doi: 10.1016/j.surfcoat.2018.01.073
13 Tang Z L, Wang F H, Wu W. Effect of Cr on the high-temperature oxidation properties of TiAl intermetallic compounds [J]. Acta Metall. Sin., 1997, 33(10): 1028
唐兆麟, 王福会, 吴 维. Cr对TiAl金属间化合物高温氧化性能的影响 [J]. 金属学报, 1997, 33(10): 1028
14 Guo X Z. Microstructure and high temperature oxidation resistance of Ti-Al-Cr coatings by laser melting on titanium alloy surfaces [D]. Kunming: Kunming University Of Science And Technology, 2018
郭新政. 钛合金表面激光熔覆Ti-Al-Cr涂层的组织及其高温抗氧化性能 [D]. 昆明: 昆明理工大学, 2018
15 Wang H, Wu M P, Lu P P, et al. Effect of laser power on the mechanical properties of the cobalt-based/go composite coating [J]. Laser & Optoelectronics Process, 2020, 57(9): 134
王 航, 武美萍, 陆佩佩 等. 激光功率对钴基/GO复合熔覆层力学性能的影响 [J]. 激光与光电子学进展, 2020, 57(9): 134
16 Peng B, Li H Q, Zhang Q, et al. High-temperature thermal stability and oxidation resistance of Cr and Ta co-alloyed Ti-Al-N coatings deposited by cathodic arc evaporation [J]. Corros. Sci., 2020, 167
17 Gong X, Chen R R, Wang Q, et al. Cyclic oxidation behavior and oxide scale adhesion of Al/NiCrAlY coating on pure titaniμm alloy [J]. J. Alloys Compd., 2017, 729: 679
doi: 10.1016/j.jallcom.2017.09.199
18 Lin J, Stinnett T C. Development of thermal barrier coatings using reactive pulsed dc magnetron sputtering for thermal protection of titaniμm alloys [J]. Surf. Coat. Technol., 2020, 403
19 Lee J K, Oh M H, Wee D M, et al. Long-term oxidation properties of Al-Ti-Cr two-phase alloys as coating materials for TiAl alloy [J]. Intermetallics, 2002, 10: 347
doi: 10.1016/S0966-9795(02)00006-7
20 Wang B, Lu C Y, Sun C, et al. Effect of NiCrAlY coatings on oxidation resistance of Ni-base superalloy K17 [J]. Corros. Sci. Prot. Technol., 2002, 14(01): 7
王 冰, 卢春燕, 孙 超 等. NiCrAlY涂层对Ni基高温合金K17抗氧化性能的影响 [J]. 腐蚀科学与防护技术, 2002, 14(01): 7
21 Li M S. High Temperature Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 2001: 148
李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 148
22 Lambrigger M, Strain and substitution X-ray scattering of Ni 0. 882Ti0.118 with concentration waves in the <100> direction [J]. J. Phys. Chem. Solids, 1991, 52(7): 913
doi: 10.1016/0022-3697(91)90014-Q
23 Peng X M, Xia C Q, Dai X Y, et al. Study on the interface reaction behavior of NiCrAlY coating on titanium alloy [J]. Surf. Coat. Technol., 2013, 232: 254
doi: 10.1016/j.surfcoat.2013.05.024
24 Peng X M, Xia C Q, Wang J H, et al. Oxidation behavior of TC4 titanium alloy with NiCrAlY coating [J]. The Chinese Journal of Nonferrous Metals, 2008, 18(4): 601
彭小敏, 夏长清, 王金惠 等. TC4钛合金沉积NiCrAlY涂层的氧化行为 [J]. 中国有色金属学报, 2008, 18(4): 601
25 Liu H P, Hao S S, Wang X H, et al. Interaction of a near-alpha type titanium alloy with NiCrAlY protective coating at high temperatures [J]. Scr. Mater., 1998, 39(10): 1443
doi: 10.1016/S1359-6462(98)00333-9
26 Rominiyi A L, Shongwe M B, Ogunmuyiwa E N, et al. Effect of nickel addition on densification, microstructure and wear behaviour of spark plasma sintered CP-titanium [J]. Mater. Chem. Phys., 2020, 240: 122130
doi: 10.1016/j.matchemphys.2019.122130
27 Liu H W, Bishop D P, Plucknett K P. A comparison of Ti-Ni and Ti-Sn binary alloys processed using powder metallurgy [J]. Mater. Sci. Eng. A, 2015, 644: 392
doi: 10.1016/j.msea.2015.07.085
[1] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[4] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[5] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[6] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[7] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
[8] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[9] ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. 材料研究学报, 2023, 37(3): 184-192.
[10] LIU Dongyang, TONG Guangzhe, GAO Wenli, WANG Weikai. Anisotropy of 2060 Al-Li Alloy Thick Plate[J]. 材料研究学报, 2023, 37(3): 235-240.
[11] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[12] YU Cong, CHEN Leping, JIANG Hongxiang, ZHOU Quan, YANG Chenggang. Effect of Deep Cryogenic-Aging Treatment on Microstructure and Mechanical Properties of 7075 Al-alloy[J]. 材料研究学报, 2023, 37(2): 120-128.
[13] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[14] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[15] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
No Suggested Reading articles found!