Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (9): 687-698    DOI: 10.11901/1005.3093.2021.466
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Properties of Near-infrared Reflective Superhydrophobic Yellow Coating
CHENG Hongjie, LIU Huangjuan, JIANG Ting, WANG Fajun(), LI Wen
School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China
Cite this article: 

CHENG Hongjie, LIU Huangjuan, JIANG Ting, WANG Fajun, LI Wen. Preparation and Properties of Near-infrared Reflective Superhydrophobic Yellow Coating. Chinese Journal of Materials Research, 2022, 36(9): 687-698.

Download:  HTML  PDF(25788KB) 
Export:  BibTeX | EndNote (RIS)      

The superhydrophobic yellow coating was prepared by mixing titanium chromium brown powder (TCB), rutile titanium dioxide (TiO2), hydrophobic nano silica (SiO2) with polydimethylsiloxane (PDMS) solution and brush coating by one step. The surface wettability, hydrophobic stability, ultraviolet light aging resistance, self-cleaning performance and near-infrared reflection performance of the coating were systematically investigated. The results show that the water contact angle (CA) and roll angle (SA) of the coating are 155.2° and 5.4°, respectively; the coating retains excellent hydrophobicity after sandpaper wear at a distance of 2 m by 1.0 kPa and water impact at a distance of 5 L, meanwhile its adhesion and hardness reach grade 2 and 6B, respectively; the coating surface presents superhydrophobic effect and have chemical stability in solutions of different pH; The coating surface still retains strong hydrophobicity after ultraviolet light irradiation for 240 h, indicating that it has UV aging resistance; the coating surface has excellent self-cleaning performance, and the pollutants are easily carried away by water droplets; the near-infrared reflectance and solar reflectance of the coating are 0.858 and 0.672, respectively. The coating has obvious cooling effect on the ordinary cement board, and still maintains a high reflectance after outdoor exposure and water impact.

Key words:  surface and interface of materials      super hydrophobic coating      polydimethylsiloxane      Near infrared reflection      robust superhydrophobicity      self-cleaning     
Received:  16 August 2021     
ZTFLH:  TB34  
Fund: Natural Science Foundation of China(51801083);Natural Science Foundation of Jiangsu Province(BK20181044)
About author:  WANG Fajun, Tel: (0519)86953280, E-mail:

URL:     OR

Fig.1  TEM image of the hydrophobic nano-SiO2 particles
Fig.2  SEM images of different coatings (a1-a3) IOY/PDMS, (b1-b3) TCB/PDMS, (c1-c3) TiO2/PDMS and (d1-d3) TCB60-TiO240/PDMS
Fig.3  Surface wettability of TCB60-TiO240/PDMS coating (a) without hydrophobic nano-SiO2 and (b) containing hydrophobic nano-SiO2
Fig.4  Schematic diagram of TCB60-TiO240/PDMS coating surface
Fig.5  Schematic diagram of the mechanical robustness test (a), CAs and SAs of the coating surface during abrasion cycles test (b), schematic diagram of water flow impact test (c) and CAs and SAs of the coating surface during water flow shock cycles (d)
Fig.6  SEM images of TCB60-TiO240/PDMS coating after one (a, b) and 10 times of sandpaper wear (c, d)
Fig.7  Schematic diagram of adhesion test (a), surface wettability after adhesion test and test results (b~d), schematic diagram of hardness test (e) and hardness test results (f)
Fig.8  Surface wettability in HCl solutions with pH=1,in NaCl solutions with pH=7 and in NaOH solutions with pH=14 (a) 0 h and (b) 3 h; (c) CAs and SAs
Fig.9  Value of surface CAs and SAs of coating in the UV irradiation cycles (a) SEM image of coating surface irradiated for 0 h (b) and SEM image of coating surface irradiated for 240 h (c)
Fig.10  Peeling ratio of different substrate coatings after 10 times of sandpaper wear (a) and CAs and SAs of different substrate coatings after 240 h UV irradiation (b)
Fig.11  Spectral reflective curves of different coatings (a), effect of outdoor sunlight exposure time on the surface temperature of various coatings (b), Spectral reflection curve of TCB60-TiO240 /PDMS coating with different storage time (c) and NIR and SOLAR reflectance (d) during water flow shock cycles
Table 2  These coatings measured spectral and solar reflectance values
Number of layers



Table 3  Spectral reflectance and solar reflectance values of different TCB60-TiO240 /PDMS coating thickness
Fig.12  Picture of coating by regular camera (a) and infrared camera(b)
Fig.13  Self-cleaning effect of the TCB60-TiO240/PDMS coating
1 Akbari H, Matthews H D. Global cooling updates: Reflective roofs and pavements [J]. Energ. Buildings, 2012, 55: 2
doi: 10.1016/j.enbuild.2012.02.055
2 Garshasbi S, Haddad S, Paolini R, et al. Urban mitigation and building adaptation to minimize the future cooling energy needs [J]. Sol. Energy, 2020, 204: 708
doi: 10.1016/j.solener.2020.04.089
3 Chen J, Lu L, Gong Q, et al. Techno-economic and environmental performance assessment of radiative sky cooling-based super-cool roof applications in China [J]. Energ. Convers. Manage., 2021, 245: 114621
doi: 10.1016/j.enconman.2021.114621
4 Jazaeri J, Gordon R L, Alpcan T. Influence of building envelopes, climates, and occupancy patterns on residential HVAC demand [J]. J. Build. Eng., 2018, 22: 33
5 Levinson R, Berdahl P, Akbari H. Solar spectral optical properties of pigments-Part I: model for deriving scattering and absorption coefficients from transmittance and reflectance measurements [J]. Sol. Energ. Mat. Sol. C., 2005, 89(4): 319
doi: 10.1016/j.solmat.2004.11.012
6 Xue X, Qin J, Song J, et al. The methods for creating energy efficient cool gray building coatings-Part I: Preparation from white and black pigments [J]. Sol. Energ. Mat. Sol. C., 2014, 130: 587
doi: 10.1016/j.solmat.2014.07.044
7 Jiang L, Xue X, Qu J, et al. The methods for creating energy efficient cool gray building coatings-Part II: Preparation from pigments of complementary colors and titanium dioxide rutile [J]. Sol. Energ. Mat. Sol. C., 2014, 130: 410
doi: 10.1016/j.solmat.2014.07.043
8 Song Z, Zhang W, Shi Y, et al. Optical properties across the solar spectrum and indoor thermal performance of cool white coatings for building energy efficiency [J]. Energ. Buildings, 2013, 63: 49
doi: 10.1016/j.enbuild.2013.03.051
9 Zhang W, Song Z, Shi Y, et al. The effects of manufacturing processes and artificial accelerated weathering on the solar reflectance and cooling effect of cool roof coatings [J]. Sol. Energ. Mat. Sol. C., 2013, 118: 61
doi: 10.1016/j.solmat.2013.07.039
10 Berdahl P, Akbari H, Levinson R, et al. Weathering of roofing materials-an overview [J]. Constr. Build. Mater., 2008, 22 (4): 423
doi: 10.1016/j.conbuildmat.2006.10.015
11 Wang G, Li A, Li K, et al. A fluorine-free superhydrophobic silicone rubber surface has excellent self-cleaning and bouncing properties [J]. J. Colloid Interf. Sci., 2020, 588: 175
doi: 10.1016/j.jcis.2020.12.059
12 Shan X, Wang J H, Zhang K, et al. Microstructure and properties of superhydrophobic surfaces of HDPE/EPDM thermoplastic vulcanizate [J]. Special Purpose Rubber Products, 2021, 42(4): 2
单 秀, 王君豪, 张 凯 等. 超疏水HDPE/EPDM TPV表面的结构与性能 [J]. 特种橡胶制品, 2021, 42(4): 2
13 Gao Y L, Li X K, Dai K M, et al. Anti-icng technology and effectiveness evaluation of super-hydrophobic bionic cement concrete pavement [J]. M. R., 2017, 31(014): 132
高英力, 李学坤, 代凯明 等. 超疏水仿生水泥混凝土路面防覆冰技术及效能评价 [J]. 材料导报, 2017, 31(014): 132
14 Yi Z D, Liao M R, Kang F, et al. Fabrication and characterization of superhydrophobic wood by etching polydopamine coating with sodium methylsilicate [J]. Acta Mater. Compos. Sin., 2021, 38(9): 3035
易泽德, 廖木荣, 康 帆 等. 甲基硅酸钠刻蚀聚多巴胺涂层构建超疏水木材及表征 [J]. 复合材料学报, 2021, 38(9): 3035
15 Siddiqui A R, Li W, Wang F, et al. One-step fabrication of transparent superhydrophobic surface [J]. Appl. Surf. Sci., 2021, 542: 148534
doi: 10.1016/j.apsusc.2020.148534
16 Wang F, Xie T, Ou J, et al. Cement based superhydrophobic coating with excellent robustness and solar reflective ability [J]. J. Alloy. Compd., 2020, 823: 1538
17 Zhu C, Lv J, Chen L, et al. Dark, heat-reflective, anti-ice rain and superhydrophobic cement concrete surfaces [J]. Constr. Build. Mater., 2019, 220: 21
doi: 10.1016/j.conbuildmat.2019.05.188
18 Qi Y, Yang Z, Huang W, et al. Robust superhydrophobic surface for anti-icing and cooling performance: Application of fluorine-modified TiO2 and fumed SiO2 [J]. Appl. Surf. Sci., 2021, 538:148131
doi: 10.1016/j.apsusc.2020.148131
19 Xue X, Yang Z, Li Y, et al. Superhydrophobic self-cleaning solar reflective orange-gray paint coating [J]. Sol. Energ. Mat. Sol. C., 2018, 174: 292
doi: 10.1016/j.solmat.2017.09.014
20 Yang Z, Xue X, Dai J G, et al. Study of a super-non-wetting self-cleaning solar reflective blue-grey paint coating with luminescence [J]. Sol. Energ. Mat. Sol. C., 2018, 176: 69
doi: 10.1016/j.solmat.2017.11.035
21 Shi S, Lei B, Li M, et al. Thermal decomposition behavior of a thermal protection coating composite with silicone rubber: Experiment and modeling [J]. Prog. Org. Coat., 2020, 143: 105609
22 Zhang M, Li S J, Li X P, et al. Preparation of organosilicone anti-wear coating on PDMS membrane [J]. Mater. Prot., 2021, 54(2): 98
张 敏, 李松晶, 李孝平 等. PDMS薄膜表面有机硅耐磨涂层的制备研究 [J]. 材料保护, 2021, 54(2): 98
23 Latifi A, Imani M, Khorasani M T, et al. Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate [J]. Appl. Surf. Sci, 2014, 320: 471
doi: 10.1016/j.apsusc.2014.09.084
24 Zeng G X, Yang J K, Li F, et al. Preparation and properties of chrome antimony titanium buff rutile-clad hollow glass microspheres as composite pigment [J]. Electroplat. & Finishing, 2017, 36(10): 510
曾国勋, 杨建坤, 李 风 等. 钛铬棕包覆空心玻璃微珠复合颜料的制备及性能 [J]. 电镀与涂饰, 2017, 36(10): 510
25 Yang G, Deng A Z, Chen J B. Preparation and properties of medium-brightness energy-efficient coatings for building [J]. Electroplat. & Finishing, 2017, 36(6): 301
杨 光, 邓安仲, 陈静波. 中明度建筑节能涂层的制备及性能 [J]. 电镀与涂饰, 2017, 36(6): 301
26 ASTME1175-87(2015),Standard test method for determining solar or photopic reflectance, transmittance, and absorptance of materials using a large diameter integrating sphere[S].
27 GB/T 37361-2019, Determination of the film thickness–Ultrasonic thickness gauge method[S].
GB/T 37361-2019, 漆膜厚度的测定超声波测厚仪法[S].
28 GB/T 9286-1998, Paints and varnishes–Cross cut test for films[S].
GB/T 9286-1998, 色漆和清漆 漆膜的划格试验[S].
29 GB/T 6739-2006, Paints and varnishes–Determination of film hardness by pencil test[S].
GB/T 6739-2006, 色漆和清漆 铅笔法测定漆膜硬度[S].
30 Li K, Zeng X, Li H, et al. Study on the wetting behavior and theoretical models of polydimethylsiloxane/silica coating [J]. Appl. Surf. Sci, 2013, 279(15): 458
doi: 10.1016/j.apsusc.2013.04.137
31 Qi W D, Xu S J, Xu Z L, et al. Preparation of superhydrophobic PDMS/PVDF nanofiber membrance and its phenol separation performance [J]. Membrane Science and Technology, 2021, 41(1): 11
齐炜东, 徐孙杰, 许振良 等. 超疏水PDMS/PVDF纳米纤维膜制备及其苯酚分离性能 [J]. 膜科学与技术, 2021, 41(1): 11
32 Ji Z, Liu Y, Du F. Rational design of superhydrophobic, transparent hybrid coating with superior durability [J]. Prog. Org. Coat., 2021, 157: 106294.
33 Li Y, Wang X Y, Xu J C. Study on simple preparation and performance of industrial superhydrophobic TiO2 coating [J]. Nonferrous Metal Materials and Engineering, 2021, 42(3): 24
李 洋, 王现英, 徐京城. 工业化超疏水TiO2涂层的简易制备和性能研究 [J]. 有色金属材料与工程, 2021, 42(3): 24
34 Zhang M, Ma L, Wang Q, et al. Wettability behavior of nanodroplets on copper surfaces with hierarchical nanostructures [J]. Colloid. Surface. A., 2020, 604: 125291
doi: 10.1016/j.colsurfa.2020.125291
35 Gong X, Zhang L, He S, et al. Rewritable superhydrophobic coatings fabricated using water-soluble polyvinyl alcohol [J]. Mater. Design, 2020, 196: 109112
36 Tu K, Wang X, Kong L, et al. Facile preparation of mechanically durable, self-healing and multifunctional superhydrophobic surfaces on solid wood [J]. Mater. Design, 2018, 140: 30
37 Nine M J, Cole M A, Johnson L, et al. Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties [J]. Acs Appl. Mater. Inter., 2015, 7(51): 28482
doi: 10.1021/acsami.5b09611
38 Zang D L, Wei E Z, Jing H, et al. Construction of super-hydrophobic structure on surface of super ferritic stainless steel B44660 and its corrosion resistance [J]. Chin. J. Mater. Res., 2021, 35(1): 7
doi: 10.11901/1005.3093.2020.154
张大磊, 魏恩泽, 荆 赫 等. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能 [J]. 材料研究学报, 2021, 35(1): 7
doi: 10.11901/1005.3093.2020.154
39 Weng T Y, Lai D L, Li X C, et al. Preparation and property of superhydrophobic phosphate cerium composite coatings on hot-dip galvanizing carbon steel [J]. Chin. J. Mater. Res., 2018, 032(011): 801
翁天宇, 赖德林, 李晓聪 等. 热浸镀锌层磷酸盐-铈盐复合处理制备超疏水膜层研究 [J]. 材料研究学报, 2018, 032(011): 801
40 Zhu T, Cheng Y, Huang J, et al. A transparent superhydrophobic coating with mechanochemical robustness for anti-icing, photocatalysis and self-cleaning [J]. Chem. Eng. J., 2020, 399: 125746
doi: 10.1016/j.cej.2020.125746
41 Lan Y, Lu Y, Ren Z. Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications [J]. Nano Energy, 2013, 2(5): 1031
doi: 10.1016/j.nanoen.2013.04.002
42 JG/T 235-2014, Architectural reflective thermal insulation coating[S].
JG/T 235-2014, 建筑反射隔热涂料 [S].
[1] YANG Yawei, CHANG Shulong, SHANG Yuanyuan. Performance of Hydrophobic Stretchable Carbon Nanotubes/Polydimethylsiloxane Composite Films[J]. 材料研究学报, 2021, 35(10): 795-800.
[2] YU Zexin, SANG Lixia. Preparation and Formation Mechanism of a Novel TiO2 Nano Bowl Array with Large Hole Diameter[J]. 材料研究学报, 2020, 34(7): 489-494.
[3] JI Jingou YANG Bin XIA Zhining JIANG Xingliang SHU Lichun. Preparation of Super-Hydrophobic and Self-Cleaning Coating of Nano-Composite Fluoropolyacrylate[J]. 材料研究学报, 2011, 25(4): 422-426.
No Suggested Reading articles found!