|
|
Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation |
YOU Baodong1,2, ZHU Mingwei1(), YANG Pengju2,3, HE Jie2,3() |
1.School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
|
Cite this article:
YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation. Chinese Journal of Materials Research, 2023, 37(8): 561-570.
|
Abstract This review summarizes the recent research progress in the preparation of porous metal materials by alloy phase separation. Combined with the phase separation mechanism of the alloy, the formation mechanism of the porous structure during the phase separation process was discussed based on the interfacial spinodal decomposition and diffusion-coupled growth. The effect of phase-separated alloy system, composition change and process parameter on the characteristics such as morphology, porosity and ligament size of the porous structure were systematically analyzed. Furthermore, the properties of phase-separated porous metal materials and their application prospects in the fields of catalysis, electrolytic capacitors, and biomedicine are summarized due to their large specific surface area and interconnected ligaments. Finally, the research and development trend of the preparation of porous metals by alloy phase separation is proposed.
|
Received: 14 September 2022
|
|
Fund: National Natural Science Foundation of China(52174380);National Natural Science Foundation of China(52174380);Space Utilization System of China Manned Space Engineering(KJZ-YY-NCL06);Scientific Instrument Developing Project of the Chinese Academy of Sciences(YJKYYQ20210012) |
Corresponding Authors:
HE Jie, Tel:(024)83973120, E-mail: jiehe@imr.ac.cn;
ZHU Mingwei,Tel:(024)89724198, E-mail: mwzhu@sau.edu.cn
|
1 |
Tang H P, Zhang Z D. Development status of metal porous materials [J]. Rare Metal Mater. Eng., 1997, 26(1): 3
|
|
汤慧萍, 张正德. 金属多孔材料发展现状 [J]. 稀有金属材料与工程, 1997, 26(1): 3
|
2 |
Jin H J, Kurmanaeva L, Schmauch J, et al. Deforming nanoporous metal: Role of lattice coherency [J]. Acta Mater., 2009, 57(9): 2665
doi: 10.1016/j.actamat.2009.02.017
|
3 |
Jin H J, Wang X L, Parida S, et al. Nanoporous Au-Pt alloys as large strain electrochemical actuators [J]. Nano Lett., 2010, 10(1): 187
doi: 10.1021/nl903262b
|
4 |
Ye X L, Liu F, Jin H J. Electrochemical actuation of nanoporous gold deformed by compression [J]. Acta Metall. Sin., 2014, 50(2): 252
doi: 10.3724/SP.J.1037.2013.00664
|
|
叶兴龙, 刘 枫, 金海军. 压缩变形纳米多孔金电化学驱动性能研究 [J]. 金属学报, 2014, 50(2): 252
doi: 10.3724/SP.J.1037.2013.00664
|
5 |
Ding Y, Zhang Z H. Nanoporous Metals for Advanced Energy Technologies [M]. Cham: Springer, 2016
|
6 |
Jin H J, Weissmüller J, Farkas D. Mechanical response of nanoporous metals: A story of size, surface stress, and severed struts [J]. MRS Bull., 2018, 43(1): 35
doi: 10.1557/mrs.2017.302
|
7 |
Fujita T. Diversity of nanoporous metals [J]. Metals, 2019, 9(9):996
doi: 10.3390/met9090996
|
8 |
Hadden M, Martinez-Martin D, Yong K T, et al. Recent advancements in the fabrication of functional nanoporous materials and their biomedical applications [J]. Materials (Basel), 2022, 15(6): 2111
doi: 10.3390/ma15062111
|
9 |
Gan Y X, Zhang Y P, Gan J B. Nanoporous metals processed by dealloying and their applications [J]. AIMS Mater. Sci., 2018, 5(6):1141
|
10 |
Zheng M, Yang J, Zhang H. Review on preparation and applications of porous metal materials [J]. Mater. Rep., 2022, 36(18): 78
|
|
郑 敏, 杨 瑾, 张 华. 多孔金属材料的制备及应用研究进展 [J]. 材料导报, 2022, 36(18): 78
|
11 |
Diao G L, Guo X X, Li X. Progresses of research on metallic nanoporous materials [J]. J. Univ. Sci. Technol. Liaoning, 2018, 41(6):401
|
|
刁桂林, 郭轩轩, 李 雪. 纳米多孔金属材料的研究进展 [J]. 辽宁科技大学学报, 2018, 41(6): 401
|
12 |
Li Y W, Zhang M, Wang X J, et al. Research progress in preparation and mechanical properties of nanoporous metals [J]. J. Aeronaut. Mater., 2018, 38(5): 10
|
|
李元伟, 张 猛, 王小健 等. 纳米多孔金属的制备方法及其力学性能的研究进展 [J]. 航空材料学报, 2018, 38(5): 10
|
13 |
Juarez T, Biener J, Weissmüller J, et al. Nanoporous metals with structural hierarchy: a review [J]. Adv. Eng. Mater., 2017, 19(12): 1700389
doi: 10.1002/adem.v19.12
|
14 |
Qiu H J, Peng L, LI X, et al. Using corrosion to fabricate various nanoporous metal structures [J]. Corros. Sci., 2015, 92: 16
doi: 10.1016/j.corsci.2014.12.017
|
15 |
Mokhtari M. FeCr composites: from metal/metal to metal/polymer via micro/nano metallic foam, exploitation of liquid metal dealloying process [D]. Sendai: Université de Lyon, 2019
|
16 |
He J, Zhao J Z. Microstructures of rapidly solidified Cu-Fe immiscible alloy [J]. Acta Metall. Sin., 2005, 41: 407
|
|
何 杰, 赵九洲. 快速凝固Cu-Fe难混溶合金的显微组织 [J]. 金属学报, 2005, 41: 407
|
17 |
He J, Zhao J Z, Li H L, et al. Directional solidification and microstructural refinement of immiscible alloys [J]. Metall. Mater. Trans., 2008, 39A(5) : 1174
|
18 |
Chen B, He J, Sun X J, et al. Liquid-liquid phase separation of Fe-Cu-Pb alloy and its application in metal separation and recycling of waste printed circuit boards [J]. Acta Metall. Sin., 2019, 55(6):751
doi: 10.11900/0412.1961.2018.00486
|
|
陈 斌, 何 杰, 孙小钧 等. Fe-Cu-Pb合金液-液相分离及废旧电路板混合金属分级分离与回收 [J]. 金属学报, 2019, 55(6): 751
|
19 |
Zhao J Z, Jiang H X, Sun Q, et al. Progress of research on solidification process and microstructure control of immiscible alloys [J]. Mater. China, 2017, 36(4): 12
|
|
赵九洲, 江鸿翔, 孙 倩 等. 偏晶合金凝固过程及凝固组织控制方法研究进展 [J]. 中国材料进展, 2017, 36(4): 12
|
20 |
Wada T, Yubuta K, Inoue A, et al. Dealloying by metallic melt [J]. Mater. Lett., 2011, 65(7): 1076
doi: 10.1016/j.matlet.2011.01.054
|
21 |
He J, Zhao J Z, Li H Q. Kinetics of liquid-liquid phase transformation in Cu-based alloys with a metastable miscibility gap [J]. J. Univ. Sci. Technol. Beijing, 2008, 30(12): 1348
|
|
何 杰, 赵九洲, 李海权. Cu基亚稳难混溶合金液-液相变 [J]. 北京科技大学学报, 2008, 30(12): 1348
|
22 |
He J, Zhao J Z, Wang X F. An experimental study of the rapid continuous solidification of Al-Bi immiscible alloy [J]. Acta Metall. Sin., 2006, 42: 67
|
|
何 杰, 赵九洲, 王晓峰. Al-Bi难混溶合金快速连续凝固的实验研究 [J]. 金属学报, 2006, 42: 67
|
23 |
He J, Kaban I, Mattern N, et al. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation [J]. Sci. Rep., 2016, 6: 25832
doi: 10.1038/srep25832
pmid: 27181922
|
24 |
Zhao J Z, Ratke L, Feuerbacher B. Microstructure evolution of immiscible alloys during cooling through the miscibility gap [J]. Modell. Simul. Mater. Sci., 1998, 6(2): 123
doi: 10.1088/0965-0393/6/2/003
|
25 |
Lu W Q, Zhang S G, Zhang W, et al. Direct observation of the segregation driven by bubble evolution and liquid phase separation in Al-10 wt.% Bi immiscible alloy [J]. Scr. Mater., 2015, 102: 19
doi: 10.1016/j.scriptamat.2015.02.004
|
26 |
Geslin P A, Mccue I, Gaskey B, et al. Topology-generating interfacial pattern formation during liquid metal dealloying [J]. Nat. Commun., 2015, 6: 8887
doi: 10.1038/ncomms9887
|
27 |
Mccue I, Karma A, Erlebacher J. Pattern formation during electrochemical and liquid metal dealloying [J]. MRS Bull., 2018, 43(1):27
doi: 10.1557/mrs.2017.301
|
28 |
Lai L H, Geslin P A, Karma A. Microstructural pattern formation during liquid metal dealloying: Phase-field simulations and theoretical analyses [J]. Phys. Rev. Mater., 2022, 6: 093803
|
29 |
Lai L H, Gaaskey B, Chuang A, et al. Topological control of liquid-metal-dealloyed structures [J]. Nat. Commun., 2022, 13(1): 2918
doi: 10.1038/s41467-022-30483-5
pmid: 35614044
|
30 |
Geslin P A, Buchet M, Wada T, et al. Phase-field investigation of the coarsening of porous structures by surface diffusion [J]. Phys. Rev. Mater., 2019, 3(8): 083401
|
31 |
Mccue I, Gaskey B, Geslin P A, et al. Kinetics and morphological evolution of liquid metal dealloying [J]. Acta Mater., 2016, 115: 10
doi: 10.1016/j.actamat.2016.05.032
|
32 |
Tsuda M, Wada T, Kato H. Kinetics of formation and coarsening of nanoporous α-titanium dealloyed with Mg melt [J]. J. Appl. Phys., 2013, 114(11): 113503
doi: 10.1063/1.4821066
|
33 |
Kim J W, Tsuda M, Wada T, et al. Optimizing niobium dealloying with metallic melt to fabricate porous structure for electrolytic capacitors [J]. Acta Mater., 2015, 84: 497
doi: 10.1016/j.actamat.2014.11.002
|
34 |
Wada T, Yubuta K, Kato H. Evolution of a bicontinuous nanostructure via a solid-state interfacial dealloying reaction [J]. Scr. Mater., 2016, 118: 33
doi: 10.1016/j.scriptamat.2016.03.008
|
35 |
Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
doi: 10.2320/matertrans.46.2817
|
36 |
Joo S H, Wada T, Kato H. Development of porous FeCo by liquid metal dealloying: Evolution of porous morphology and effect of interaction between ligaments and melt [J]. Mater. Des., 2019, 180: 107908
doi: 10.1016/j.matdes.2019.107908
|
37 |
Wada T, Kato H. Three-dimensional open-cell macroporous iron, chromium and ferritic stainless steel [J]. Scr. Mater., 2013, 68(9):723
doi: 10.1016/j.scriptamat.2013.01.011
|
38 |
Okulov I V, Lamaka S V, Wada T, et al. Nanoporous magnesium [J]. Nano Res., 2018, 11(12): 6428
doi: 10.1007/s12274-018-2167-9
|
39 |
Okulov I V, Okulov A V, Soldatov I V, et al. Open porous dealloying-based biomaterials as a novel biomaterial platform [J]. Mater. Sci. Eng., 2018, 88C: 95
|
40 |
Wada T, Setyawan A D, Yubuta K, et al. Nano- to submicro-porous β-Ti alloy prepared from dealloying in a metallic melt [J]. Scr. Mater., 2011, 65(6): 532
doi: 10.1016/j.scriptamat.2011.06.019
|
41 |
Okulov A V, Volegov A S, Weissmüller J, et al. Dealloying-based metal-polymer composites for biomedical applications [J]. Scr. Mater., 2018, 146: 290
doi: 10.1016/j.scriptamat.2017.12.022
|
42 |
Okulov I V, Weissmüller J, Markmann J. Dealloying-based interpenetrating-phase nanocomposites matching the elastic behavior of human bone [J]. Sci. Rep., 2017, 7(1): 20
doi: 10.1038/s41598-017-00048-4
pmid: 28154414
|
43 |
Mokhtari M, Le Bourlot C, Adrien J, et al. Cold-rolling influence on microstructure and mechanical properties of NiCr-Ag composites and porous NiCr obtained by liquid metal dealloying [J]. J. Alloys Compd., 2017, 707: 251
doi: 10.1016/j.jallcom.2016.12.105
|
44 |
Berger S A, Okulov I V. Open porous α+β titanium alloy by liquid metal dealloying for biomedical applications [J]. Metals, 2020, 10(11): 1450
doi: 10.3390/met10111450
|
45 |
Mokhtari M, Wada T, Le Bourlot C, et al. Low cost high specific surface architectured nanoporous metal with corrosion resistance produced by liquid metal dealloying from commercial nickel superalloy [J]. Scr. Mater., 2019, 163: 5
doi: 10.1016/j.scriptamat.2018.12.023
|
46 |
Mokhtari M, Wada T, Le Bourlot C, et al. Corrosion resistance of porous ferritic stainless steel produced by liquid metal dealloying of Incoloy 800 [J]. Corros. Sci., 2020, 166: 108468
doi: 10.1016/j.corsci.2020.108468
|
47 |
Joo S H, Bae J W, Park W Y, et al. Beating thermal coarsening in nanoporous materials via high-entropy design [J]. Adv. Mater., 2020, 32(6): 1906160
doi: 10.1002/adma.v32.6
|
48 |
Okulov A V, Joo S H, Kim H S, et al. Nanoporous high-entropy alloy by liquid metal dealloying [J]. Metals, 2020, 10(10): 1396
doi: 10.3390/met10101396
|
49 |
Song R R, Han J H, Okugawa M, et al. Ultrafine nanoporous intermetallic catalysts by high-temperature liquid metal dealloying for electrochemical hydrogen production [J]. Nat. Commun., 2022, 13(1): 5157
doi: 10.1038/s41467-022-32768-1
pmid: 36055985
|
50 |
Wada T, Ichitsubo T, Yubuta K, et al. Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process [J]. Nano Lett., 2014, 14(8): 4505
doi: 10.1021/nl501500g
pmid: 24988470
|
51 |
Yu S G, Yubuta K, Wada T, et al. Three-dimensional bicontinuous porous graphite generated in low temperature metallic liquid [J]. Carbon, 2016, 96: 403
doi: 10.1016/j.carbon.2015.09.093
|
52 |
Zhao C H, Wada T, De Andrade V, et al. Three-dimensional morphological and chemical evolution of nanoporous stainless steel by liquid metal dealloying [J]. ACS Appl. Mater. Interfaces, 2017, 9(39): 34172
doi: 10.1021/acsami.7b04659
|
53 |
Wada T, Geslin P A, Kato H. Preparation of hierarchical porous metals by two-step liquid metal dealloying [J]. Scr. Mater., 2018, 142: 101
doi: 10.1016/j.scriptamat.2017.08.038
|
54 |
Jin H J, Weissmüller J. Bulk nanoporous metal for actuation [J]. Adv. Eng. Mater., 2010, 12(8): 714
doi: 10.1002/adem.200900329
|
55 |
Chen Q, Ding Y, Chen M W. Nanoporous metal by dealloying for electrochemical energy conversion and storage [J]. MRS Bull., 2018, 43(1): 43
doi: 10.1557/mrs.2017.300
|
56 |
Hakamada M, Mabuchi M. Mechanical strength of nanoporous gold fabricated by dealloying [J]. Scr. Mater., 2007, 56(11): 1003
doi: 10.1016/j.scriptamat.2007.01.046
|
57 |
Biener J, Hodge A M, Hayes J R, et al. Size effects on the mechanical behavior of nanoporous Au [J]. Nano Lett., 2006, 6(10): 2379
pmid: 17034115
|
58 |
Guo X Y, Zhang C X, Tian Q H, et al. Liquid metals dealloying as a general approach for the selective extraction of metals and the fabrication of nanoporous metals: A review [J]. Mater. Today Commun., 2021, 26: 102007
|
59 |
Okulov I V, Okulov A V, Volegov A S, et al. Tuning microstructure and mechanical properties of open porous TiNb and TiFe alloys by optimization of dealloying parameters [J]. Scr. Mater., 2018, 154: 68
doi: 10.1016/j.scriptamat.2018.05.029
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|