Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (8): 561-570    DOI: 10.11901/1005.3093.2022.497
REVIEWS Current Issue | Archive | Adv Search |
Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation
YOU Baodong1,2, ZHU Mingwei1(), YANG Pengju2,3, HE Jie2,3()
1.School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation. Chinese Journal of Materials Research, 2023, 37(8): 561-570.

Download:  HTML  PDF(11528KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This review summarizes the recent research progress in the preparation of porous metal materials by alloy phase separation. Combined with the phase separation mechanism of the alloy, the formation mechanism of the porous structure during the phase separation process was discussed based on the interfacial spinodal decomposition and diffusion-coupled growth. The effect of phase-separated alloy system, composition change and process parameter on the characteristics such as morphology, porosity and ligament size of the porous structure were systematically analyzed. Furthermore, the properties of phase-separated porous metal materials and their application prospects in the fields of catalysis, electrolytic capacitors, and biomedicine are summarized due to their large specific surface area and interconnected ligaments. Finally, the research and development trend of the preparation of porous metals by alloy phase separation is proposed.

Key words:  review      metallic materials      porous metals      alloy phase separation     
Received:  14 September 2022     
ZTFLH:  TB383  
Fund: National Natural Science Foundation of China(52174380);National Natural Science Foundation of China(52174380);Space Utilization System of China Manned Space Engineering(KJZ-YY-NCL06);Scientific Instrument Developing Project of the Chinese Academy of Sciences(YJKYYQ20210012)
Corresponding Authors:  HE Jie, Tel:(024)83973120, E-mail: jiehe@imr.ac.cn;
ZHU Mingwei,Tel:(024)89724198, E-mail: mwzhu@sau.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.497     OR     https://www.cjmr.org/EN/Y2023/V37/I8/561

Fig.1  Typical phase diagram of A-B binary phase-separated alloy
Fig. 2  Mechanism of alloy phase separation to form porous structure (a) stable state of precursor; (b) interfacial spinodal decomposition leading to interfacial instability; (c) diffusion-coupled mechanisms form porous frameworks; (d) generation of continuous porous structure
Fig.3  SEM image of the ordered single crystal nanowires at the reaction front[34]
Fig.4  Mixing enthalpy relationship of A, B and C in the alloy phase separation system
MetalMgBiPbCuSnAgIn
Ti+16-14+8-9-21-2-5
V+23+10+15+5-1+17+12
Cr+24+24+28+12+10+27+20
Mn+10+3+7+4-7+13+3
Fe+18+26+29+13+11+28+19
Co+3+14+17+60+19+7
Ni-4+10+13+4-4+15+2
Nb+32+12+17+9-1+16+15
Cu-3+15+15-+7+2+10
Table 1  Mixing enthalpy between common metals ΔHmix (kJ/mol)[36]
PrecursorDealloying mediumEtching mediumPorous metal
TiCuMgHNO3Ti[20]
FeNiMgHNO3Fe[35]
CrNiMgHNO3Cr[35]
NiNbMgHNO3Nb[33]
TiTaCuCuCl2+HClTa[31]
TaTiCuMgHFMg[38]
TiZrCuMgHNO3TiZr[39]
TiCrZrCuMg+MgCaHNO3TiCrZr[40]
TiHfCuMgHNO3TiHf[41]
FeCrNiMgHNO3FeCr[35]
TiNbCuMgHNO3TiNb[42]
NiCrCuAgHNO3NiCr[43]
TiMoCuMgHNO3TiMo[44]
Incoloy 800/825MgHNO3Fe-based[45, 46]
TiVNbMoNiMgHNO3TiVNbMo[47, 48]
MnCBiHNO3C[52]
MgSiBiHNO3Si[50]
CoMoNiMgHCLCo7Mo6[49]
FeMoNiMgHCLFe7Mo6[49]
FeCrMnNiMg+BiHNO3FeCr-based
Table 2  Summary of the preparation of porous materials produced by alloy phase separation
Fig.5  Different soluble fraction Ti content (a) 95%; (b) 85%; (c) 75%; (d) 65%[26]
Fig.6  Effect of precursor composition on porosity
Fig.7  Schematic diagram of the formation of hierarchical fractal porous FeCr structure (a~c) and enlarged SEM images of porous FeCr (d, e)[53]
Fig.8  SEM micrographs of porous Nb prepared by liquid metal Mg dealloying with Ni60Nb40 ribbon precursor under different process parameters[33]
Fig.9  Relationship between yield strength and Young's modulus of Ti-based porous materials
1 Tang H P, Zhang Z D. Development status of metal porous materials [J]. Rare Metal Mater. Eng., 1997, 26(1): 3
汤慧萍, 张正德. 金属多孔材料发展现状 [J]. 稀有金属材料与工程, 1997, 26(1): 3
2 Jin H J, Kurmanaeva L, Schmauch J, et al. Deforming nanoporous metal: Role of lattice coherency [J]. Acta Mater., 2009, 57(9): 2665
doi: 10.1016/j.actamat.2009.02.017
3 Jin H J, Wang X L, Parida S, et al. Nanoporous Au-Pt alloys as large strain electrochemical actuators [J]. Nano Lett., 2010, 10(1): 187
doi: 10.1021/nl903262b
4 Ye X L, Liu F, Jin H J. Electrochemical actuation of nanoporous gold deformed by compression [J]. Acta Metall. Sin., 2014, 50(2): 252
doi: 10.3724/SP.J.1037.2013.00664
叶兴龙, 刘 枫, 金海军. 压缩变形纳米多孔金电化学驱动性能研究 [J]. 金属学报, 2014, 50(2): 252
doi: 10.3724/SP.J.1037.2013.00664
5 Ding Y, Zhang Z H. Nanoporous Metals for Advanced Energy Technologies [M]. Cham: Springer, 2016
6 Jin H J, Weissmüller J, Farkas D. Mechanical response of nanoporous metals: A story of size, surface stress, and severed struts [J]. MRS Bull., 2018, 43(1): 35
doi: 10.1557/mrs.2017.302
7 Fujita T. Diversity of nanoporous metals [J]. Metals, 2019, 9(9):996
doi: 10.3390/met9090996
8 Hadden M, Martinez-Martin D, Yong K T, et al. Recent advancements in the fabrication of functional nanoporous materials and their biomedical applications [J]. Materials (Basel), 2022, 15(6): 2111
doi: 10.3390/ma15062111
9 Gan Y X, Zhang Y P, Gan J B. Nanoporous metals processed by dealloying and their applications [J]. AIMS Mater. Sci., 2018, 5(6):1141
10 Zheng M, Yang J, Zhang H. Review on preparation and applications of porous metal materials [J]. Mater. Rep., 2022, 36(18): 78
郑 敏, 杨 瑾, 张 华. 多孔金属材料的制备及应用研究进展 [J]. 材料导报, 2022, 36(18): 78
11 Diao G L, Guo X X, Li X. Progresses of research on metallic nanoporous materials [J]. J. Univ. Sci. Technol. Liaoning, 2018, 41(6):401
刁桂林, 郭轩轩, 李 雪. 纳米多孔金属材料的研究进展 [J]. 辽宁科技大学学报, 2018, 41(6): 401
12 Li Y W, Zhang M, Wang X J, et al. Research progress in preparation and mechanical properties of nanoporous metals [J]. J. Aeronaut. Mater., 2018, 38(5): 10
李元伟, 张 猛, 王小健 等. 纳米多孔金属的制备方法及其力学性能的研究进展 [J]. 航空材料学报, 2018, 38(5): 10
13 Juarez T, Biener J, Weissmüller J, et al. Nanoporous metals with structural hierarchy: a review [J]. Adv. Eng. Mater., 2017, 19(12): 1700389
doi: 10.1002/adem.v19.12
14 Qiu H J, Peng L, LI X, et al. Using corrosion to fabricate various nanoporous metal structures [J]. Corros. Sci., 2015, 92: 16
doi: 10.1016/j.corsci.2014.12.017
15 Mokhtari M. FeCr composites: from metal/metal to metal/polymer via micro/nano metallic foam, exploitation of liquid metal dealloying process [D]. Sendai: Université de Lyon, 2019
16 He J, Zhao J Z. Microstructures of rapidly solidified Cu-Fe immiscible alloy [J]. Acta Metall. Sin., 2005, 41: 407
何 杰, 赵九洲. 快速凝固Cu-Fe难混溶合金的显微组织 [J]. 金属学报, 2005, 41: 407
17 He J, Zhao J Z, Li H L, et al. Directional solidification and microstructural refinement of immiscible alloys [J]. Metall. Mater. Trans., 2008, 39A(5) : 1174
18 Chen B, He J, Sun X J, et al. Liquid-liquid phase separation of Fe-Cu-Pb alloy and its application in metal separation and recycling of waste printed circuit boards [J]. Acta Metall. Sin., 2019, 55(6):751
doi: 10.11900/0412.1961.2018.00486
陈 斌, 何 杰, 孙小钧 等. Fe-Cu-Pb合金液-液相分离及废旧电路板混合金属分级分离与回收 [J]. 金属学报, 2019, 55(6): 751
19 Zhao J Z, Jiang H X, Sun Q, et al. Progress of research on solidification process and microstructure control of immiscible alloys [J]. Mater. China, 2017, 36(4): 12
赵九洲, 江鸿翔, 孙 倩 等. 偏晶合金凝固过程及凝固组织控制方法研究进展 [J]. 中国材料进展, 2017, 36(4): 12
20 Wada T, Yubuta K, Inoue A, et al. Dealloying by metallic melt [J]. Mater. Lett., 2011, 65(7): 1076
doi: 10.1016/j.matlet.2011.01.054
21 He J, Zhao J Z, Li H Q. Kinetics of liquid-liquid phase transformation in Cu-based alloys with a metastable miscibility gap [J]. J. Univ. Sci. Technol. Beijing, 2008, 30(12): 1348
何 杰, 赵九洲, 李海权. Cu基亚稳难混溶合金液-液相变 [J]. 北京科技大学学报, 2008, 30(12): 1348
22 He J, Zhao J Z, Wang X F. An experimental study of the rapid continuous solidification of Al-Bi immiscible alloy [J]. Acta Metall. Sin., 2006, 42: 67
何 杰, 赵九洲, 王晓峰. Al-Bi难混溶合金快速连续凝固的实验研究 [J]. 金属学报, 2006, 42: 67
23 He J, Kaban I, Mattern N, et al. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation [J]. Sci. Rep., 2016, 6: 25832
doi: 10.1038/srep25832 pmid: 27181922
24 Zhao J Z, Ratke L, Feuerbacher B. Microstructure evolution of immiscible alloys during cooling through the miscibility gap [J]. Modell. Simul. Mater. Sci., 1998, 6(2): 123
doi: 10.1088/0965-0393/6/2/003
25 Lu W Q, Zhang S G, Zhang W, et al. Direct observation of the segregation driven by bubble evolution and liquid phase separation in Al-10 wt.% Bi immiscible alloy [J]. Scr. Mater., 2015, 102: 19
doi: 10.1016/j.scriptamat.2015.02.004
26 Geslin P A, Mccue I, Gaskey B, et al. Topology-generating interfacial pattern formation during liquid metal dealloying [J]. Nat. Commun., 2015, 6: 8887
doi: 10.1038/ncomms9887
27 Mccue I, Karma A, Erlebacher J. Pattern formation during electrochemical and liquid metal dealloying [J]. MRS Bull., 2018, 43(1):27
doi: 10.1557/mrs.2017.301
28 Lai L H, Geslin P A, Karma A. Microstructural pattern formation during liquid metal dealloying: Phase-field simulations and theoretical analyses [J]. Phys. Rev. Mater., 2022, 6: 093803
29 Lai L H, Gaaskey B, Chuang A, et al. Topological control of liquid-metal-dealloyed structures [J]. Nat. Commun., 2022, 13(1): 2918
doi: 10.1038/s41467-022-30483-5 pmid: 35614044
30 Geslin P A, Buchet M, Wada T, et al. Phase-field investigation of the coarsening of porous structures by surface diffusion [J]. Phys. Rev. Mater., 2019, 3(8): 083401
31 Mccue I, Gaskey B, Geslin P A, et al. Kinetics and morphological evolution of liquid metal dealloying [J]. Acta Mater., 2016, 115: 10
doi: 10.1016/j.actamat.2016.05.032
32 Tsuda M, Wada T, Kato H. Kinetics of formation and coarsening of nanoporous α-titanium dealloyed with Mg melt [J]. J. Appl. Phys., 2013, 114(11): 113503
doi: 10.1063/1.4821066
33 Kim J W, Tsuda M, Wada T, et al. Optimizing niobium dealloying with metallic melt to fabricate porous structure for electrolytic capacitors [J]. Acta Mater., 2015, 84: 497
doi: 10.1016/j.actamat.2014.11.002
34 Wada T, Yubuta K, Kato H. Evolution of a bicontinuous nanostructure via a solid-state interfacial dealloying reaction [J]. Scr. Mater., 2016, 118: 33
doi: 10.1016/j.scriptamat.2016.03.008
35 Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
doi: 10.2320/matertrans.46.2817
36 Joo S H, Wada T, Kato H. Development of porous FeCo by liquid metal dealloying: Evolution of porous morphology and effect of interaction between ligaments and melt [J]. Mater. Des., 2019, 180: 107908
doi: 10.1016/j.matdes.2019.107908
37 Wada T, Kato H. Three-dimensional open-cell macroporous iron, chromium and ferritic stainless steel [J]. Scr. Mater., 2013, 68(9):723
doi: 10.1016/j.scriptamat.2013.01.011
38 Okulov I V, Lamaka S V, Wada T, et al. Nanoporous magnesium [J]. Nano Res., 2018, 11(12): 6428
doi: 10.1007/s12274-018-2167-9
39 Okulov I V, Okulov A V, Soldatov I V, et al. Open porous dealloying-based biomaterials as a novel biomaterial platform [J]. Mater. Sci. Eng., 2018, 88C: 95
40 Wada T, Setyawan A D, Yubuta K, et al. Nano- to submicro-porous β-Ti alloy prepared from dealloying in a metallic melt [J]. Scr. Mater., 2011, 65(6): 532
doi: 10.1016/j.scriptamat.2011.06.019
41 Okulov A V, Volegov A S, Weissmüller J, et al. Dealloying-based metal-polymer composites for biomedical applications [J]. Scr. Mater., 2018, 146: 290
doi: 10.1016/j.scriptamat.2017.12.022
42 Okulov I V, Weissmüller J, Markmann J. Dealloying-based interpenetrating-phase nanocomposites matching the elastic behavior of human bone [J]. Sci. Rep., 2017, 7(1): 20
doi: 10.1038/s41598-017-00048-4 pmid: 28154414
43 Mokhtari M, Le Bourlot C, Adrien J, et al. Cold-rolling influence on microstructure and mechanical properties of NiCr-Ag composites and porous NiCr obtained by liquid metal dealloying [J]. J. Alloys Compd., 2017, 707: 251
doi: 10.1016/j.jallcom.2016.12.105
44 Berger S A, Okulov I V. Open porous α+β titanium alloy by liquid metal dealloying for biomedical applications [J]. Metals, 2020, 10(11): 1450
doi: 10.3390/met10111450
45 Mokhtari M, Wada T, Le Bourlot C, et al. Low cost high specific surface architectured nanoporous metal with corrosion resistance produced by liquid metal dealloying from commercial nickel superalloy [J]. Scr. Mater., 2019, 163: 5
doi: 10.1016/j.scriptamat.2018.12.023
46 Mokhtari M, Wada T, Le Bourlot C, et al. Corrosion resistance of porous ferritic stainless steel produced by liquid metal dealloying of Incoloy 800 [J]. Corros. Sci., 2020, 166: 108468
doi: 10.1016/j.corsci.2020.108468
47 Joo S H, Bae J W, Park W Y, et al. Beating thermal coarsening in nanoporous materials via high-entropy design [J]. Adv. Mater., 2020, 32(6): 1906160
doi: 10.1002/adma.v32.6
48 Okulov A V, Joo S H, Kim H S, et al. Nanoporous high-entropy alloy by liquid metal dealloying [J]. Metals, 2020, 10(10): 1396
doi: 10.3390/met10101396
49 Song R R, Han J H, Okugawa M, et al. Ultrafine nanoporous intermetallic catalysts by high-temperature liquid metal dealloying for electrochemical hydrogen production [J]. Nat. Commun., 2022, 13(1): 5157
doi: 10.1038/s41467-022-32768-1 pmid: 36055985
50 Wada T, Ichitsubo T, Yubuta K, et al. Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process [J]. Nano Lett., 2014, 14(8): 4505
doi: 10.1021/nl501500g pmid: 24988470
51 Yu S G, Yubuta K, Wada T, et al. Three-dimensional bicontinuous porous graphite generated in low temperature metallic liquid [J]. Carbon, 2016, 96: 403
doi: 10.1016/j.carbon.2015.09.093
52 Zhao C H, Wada T, De Andrade V, et al. Three-dimensional morphological and chemical evolution of nanoporous stainless steel by liquid metal dealloying [J]. ACS Appl. Mater. Interfaces, 2017, 9(39): 34172
doi: 10.1021/acsami.7b04659
53 Wada T, Geslin P A, Kato H. Preparation of hierarchical porous metals by two-step liquid metal dealloying [J]. Scr. Mater., 2018, 142: 101
doi: 10.1016/j.scriptamat.2017.08.038
54 Jin H J, Weissmüller J. Bulk nanoporous metal for actuation [J]. Adv. Eng. Mater., 2010, 12(8): 714
doi: 10.1002/adem.200900329
55 Chen Q, Ding Y, Chen M W. Nanoporous metal by dealloying for electrochemical energy conversion and storage [J]. MRS Bull., 2018, 43(1): 43
doi: 10.1557/mrs.2017.300
56 Hakamada M, Mabuchi M. Mechanical strength of nanoporous gold fabricated by dealloying [J]. Scr. Mater., 2007, 56(11): 1003
doi: 10.1016/j.scriptamat.2007.01.046
57 Biener J, Hodge A M, Hayes J R, et al. Size effects on the mechanical behavior of nanoporous Au [J]. Nano Lett., 2006, 6(10): 2379
pmid: 17034115
58 Guo X Y, Zhang C X, Tian Q H, et al. Liquid metals dealloying as a general approach for the selective extraction of metals and the fabrication of nanoporous metals: A review [J]. Mater. Today Commun., 2021, 26: 102007
59 Okulov I V, Okulov A V, Volegov A S, et al. Tuning microstructure and mechanical properties of open porous TiNb and TiFe alloys by optimization of dealloying parameters [J]. Scr. Mater., 2018, 154: 68
doi: 10.1016/j.scriptamat.2018.05.029
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[11] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[12] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[13] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!