Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (4): 241-247    DOI: 10.11901/1005.3093.2021.690
ARTICLES Current Issue | Archive | Adv Search |
Comparative Investigations of in vitro Apatites Depositionin Nacre and Crossed-lamellar Structures in Mollusk Shells
JI Hongmei, WANG Xu, LI Xiaowu()
School of Material Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110819, China
Cite this article: 

JI Hongmei, WANG Xu, LI Xiaowu. Comparative Investigations of in vitro Apatites Depositionin Nacre and Crossed-lamellar Structures in Mollusk Shells. Chinese Journal of Materials Research, 2023, 37(4): 241-247.

Download:  HTML  PDF(10084KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

One specie of Pectinidae with a crossed-lamellar structure and one of Plicata with a nacreous structure were selected as the target materials in this paper. The growth of bone-like apatite on the surfaces of these two kinds of microstructures by a pre-treatment and an in vitro bioactivity assessment was investigated. The apatites were deposited more compactly and more quickly on the surface of crossed-lamellar structure in the preliminary stage of immersion in PBS, as well as in SBF. However, these two kinds of microstructures exhibit identically an excellent bioactivity after a subsequently long-term in vitro mineralization process in SBF. Therefore, in contrast to nacreous structure the crossed-lamellar structure can promote the deposition of the apatites no matter in a short term or in a long term.

Key words:  other disciplines of the materials science      biological shell      apatites deposition      nacre      crossed-lamellar structure     
Received:  14 December 2021     
ZTFLH:  TB332  
Fund: National Natural Science Foundation of China(51902043);Fundamental Research Funds for the Central Universities(N2102007);Fundamental Research Funds for the Central Universities(N2102002)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.690     OR     https://www.cjmr.org/EN/Y2023/V37/I4/241

Fig.1  Overall views and microstructures of the Pectinidae (a~d) and Plicata (e~h) shells
Fig.2  XRD patterns of the Pectinidae (a) and Plicata (b) shell samples before and after soaking in PBS
Fig. 3  SEM images showing the surface morphologies of Pectinidae (a~c) and Plicata (d~f) shell samplessoaked in PBS for 1, 3 and 5 days, respectively
Fig.4  Changes in Ca/P ratio of Pectinideaand Plicata shell samples after soaking in PBS
Fig.5  Changes of Ca2+ and P5+ concentrations and pH value of Pectinidea and Plicata shell samples after soaking in PBS for different time
Fig.6  XRD patterns ofPectinidea (a) and Plicata (b) shell samples firstly treated in PBS for 5 d and then soaked in SBF for different times
Fig.7  SEM images showing the surface morphologies of Pectinidea (a~c) and Plicata (d~f) shell samples soaked in SBF for 5, 10 and 15 d, respectively
Fig.8  Changes in Ca/P ratio of Pectinidae and Plicata shell samples after soaking in SBF
1 Bogild O B. The shell structure of the mollusks[J]. K. Dan. Vidensk. Selsk. Skr. Naturvidensk. Math. Afd., 1930, 9(5): 232
2 Kobayashi I, Samata T. Bivalve shell structure and organic matrix[J]. Mater. Sci. Eng. C, 2006, 26(4): 692
doi: 10.1016/j.msec.2005.09.101
3 Li H Z, Jin D L, Li R, et al. Structural and mechanical characterization of thermally treated conch shells[J]. JOM, 2015, 67: 720
doi: 10.1007/s11837-015-1330-y
4 Huang Z W, Li X D. Nanoscale structural and mechanical characterization of heat treated nacre[J]. Mater. Sci. Eng. C, 2009, 29(6): 1803
doi: 10.1016/j.msec.2009.02.007
5 Liang Y, Zhao J, Wang L. The structure and mechanical Properties of mollusk shell[J]. Chinese J. Mater. Res., 2007, 21(5): 555
梁 艳, 赵 杰, 王 来. 香螺壳的结构和微观力学性能[J]. 材料研究学报, 2007, 21(5): 555
6 Jackson A P, Vincent J F V, Turner R M. Comparison of nacre with other ceramic composites[J]. J. Mater. Sci., 1990, 25: 3173
doi: 10.1007/BF00587670
7 Ji H M, Yang W, Chen D L, et al. Natural arrangement of fiber-like aragonites and its impact on mechanical behavior of mollusk shells: A review[J]. J. Mech. Behav. Biomed. Mater., 2020, 110: 103940
doi: 10.1016/j.jmbbm.2020.103940
8 Sun J, Bhushan B. Hierarchical structure and mechanical properties of nacre: a review[J]. Rsc Adv., 2012, 2(20): 7617
doi: 10.1039/c2ra20218b
9 Li X W, Ji H M, Yang W, et al. Mechanical properties of crossed-lamellar structures in biological shells: A review[J]. J. Mech. Behav. Biomed. Mater., 2017, 74: 54
doi: S1751-6161(17)30211-4 pmid: 28550764
10 Lopez E, Vidal B, Berland S, et al. Demonstration of the capacity of nacre to induce bone formation by human osteoblasts maintained in vitro[J]. Tissue & Cell, 1992, 24(5): 667
11 Atlan G, Balmain N, Berland S, et al. Reconstruction of human maxillary defects with nacre powder: histological evidence for bone regeneration[J]. Comptes Rendus Acad. Sci. Ser. III, 1997, 320(3): 253
12 Lamghari M, Almeida M J, Berland S, et al. Stimulation of bone marrow cells and bone formation by nacre: in vivo and in vitro studies[J]. Bone, 1999, 25(2): 91S
doi: 10.1016/S8756-3282(99)00113-1
13 Liao H H, Mutvei H, Hammarström L, et al. Tissue responses to nacreous implants in rat femur: an in situ hybridization and histochemical study[J]. Biomaterials, 2002, 23(13): 2693
pmid: 12059018
14 Yoshimura M, Sujaridworakun P, Koh F, et al. Hydrothermal conversion of calcite crystals to hydroxyapatite[J]. Mater. Sci. Eng. C, 2004, 24(4): 521
doi: 10.1016/j.msec.2004.01.005
15 Yang C L, Chen J T, Jin D D, et al. The bone induction effect of water soluble matrix from nacre powder on human marrow stroma cells[J]. Chin. J. Clin. Anat., 2007, 25(2): 190
杨春露, 陈建庭, 金大地 等. 珍珠层水溶性提取物对人骨髓基质细胞成骨性分化的诱导作用[J]. 中国临床解剖学杂志, 2007, 25(2): 190
16 Almagro I, Drzymała P, Berent K, et al. New crystallographic relationships in biogenic aragonite: the crossed-lamellar microstructures of mollusks[J]. Cryst. Growth Des., 2016, 16: 2083
doi: 10.1021/acs.cgd.5b01775
17 Wang X, Ji H M, Li X W. Microstructure-related in vitro bioactivity of a natural ceramic of Saxidomus purpuratus shell[J]. Mater. Des., 2018, 139: 512
doi: 10.1016/j.matdes.2017.11.035
18 Kokubo T, Kushitani H, Sakka S, et al. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3[J]. J. Biomed. Mater. Res., 1990, 24(6): 721
doi: 10.1002/(ISSN)1097-4636
19 Koutsopoulos S, Dalas E. The effect of acidic amino acids on hydroxyapatite crystallization[J]. J. Cryst. Growth, 2000, 217: 410
doi: 10.1016/S0022-0248(00)00502-9
20 Ni M, Ratner B D. Nacre surface transformation to hydroxyapatite in a phosphate buffer solution[J]. Biomaterials, 2003, 24(4): 4323
doi: 10.1016/S0142-9612(03)00236-9
21 Crenshaw M A. The soluble matrix from Mercenaria mercenaria shell[J]. Biomineralization, 1972, 6: 6
[1] ZHAO Ning, JIAO Da, ZHU Yankun, LIU Dexue, LIU Zengqian, ZHANG Zhefeng. Material Science Mechanism for Efficient Protection of Natural Armor[J]. 材料研究学报, 2022, 36(1): 1-7.
No Suggested Reading articles found!