Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (7): 481-494    DOI: 10.11901/1005.3093.2022.360
REVIEWS Current Issue | Archive | Adv Search |
Research Progress of MXene Used in Lithium Sulfur Battery
JI Yuchen, LIU Shuhe(), ZHANG Tianyu, ZHA Cheng
Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
Cite this article: 

JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery. Chinese Journal of Materials Research, 2023, 37(7): 481-494.

Download:  HTML  PDF(26184KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As an emerging two-dimensional transition metal carbide or carbonitride, MXene exhibits excellent metallic conductivity, abundant surface functional groups and ultrathin two-dimensional structure, which endows it great potential in electrochemical energy storage. Lithium-sulfur batteries have a high theoretical specific capacity and become a very competitive choice in the new generation of energy storage devices. Two-dimensional MXenes and the assembled three-dimensional materials, as advanced sulfur carriers, can effectively improve the inherent poor conductivity and serious dissolution of discharge products of lithium-sulfur batteries. This paper reviews the current applications of MXene materials with two-dimensional and three-dimensional structures in lithium-sulfur batteries, analyzes the relationship between different structures and performance, summarizes the current challenges and difficulties, and gives a view on the direction to proceed for future designs.

Key words:  review      MXene      lithium sulfur battery      composites     
Received:  01 July 2022     
ZTFLH:  O646  
Fund: National Natural Science Foundation of China(51264016)
Corresponding Authors:  LIU Shuhe, Tel: 15912595890, E-mail: 2538234121@qq.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.360     OR     https://www.cjmr.org/EN/Y2023/V37/I7/481

Fig.1  Electrochemical reaction schematic diagram (a) and charge-discharge profile (b) of lithium-sulfur battery[7,10]
Fig.2  Diagram of "shuttle effect"[19]
Fig.3  SEM images of MXene before (a) and after (b) eatching[31]
Fig.4  Structural formation diagram of MXene[35]
Fig.5  Synthesis schematic of the crumpled N-Ti3C2T x /S nanosheets[37]
Fig.6  Schematic diagram of the in-situ sulfidation by thiourea[45]
Fig.7  Schematic diagram of CTF/TNS heterostructure[46]
Fig.8  SEM image of MXene@TiO2 nanoarrays[47]
Fig.9  FESEM images of CoZn-MOFs@MX[38]
Fig.10  Synthesis schematic and SEM image of MXene/RGO nanosheets[52]
Fig.11  SEM and HRTEM images of MXene/MoS2-C nanocomposite[53]
Fig.12  Schematic diagram of the synthesis process of (sulfur-impregnated) Co-MoSe2/MXene[54]
Fig.13  Schematic diagrams of Ti3C2T x @AlF3 and layered Ti3C2T x @AlF3/NH composites[56]
Fig.14  Schematic diagram of the structure of dTCP and cross-sectional SEM image
Fig.15  Schematic of synthesizing PA-MXene/CNT with unidirectional freeze-drying process[58]
Fig.16  (a) Schematic diagram of the “three regions” and (b) cycling performance of the cathode at 0.05C for sulfur loading of 10 mg·cm-2[59]
Fig.17  Structural schematic and SEM images of Ti3C2T x -CNT composites[62]
Fig.18  Schematic illustration of the MF-templating synthesis of P-NTC composites[63]
Fig.19  SEM and EDS images of hollow Co-CNT@MXene[65]
Fig.20  SEM images of S-CNT and S-CNT@MXene spheres[66]
Fig.21  Synthesis schematic and cross-section SEM images of S@PCL
Fig.22  Synthesis schematic and SEM images of N‑Ti3C2@CNT composites[68]
1 Goodenough J B, Kim Y. Challenges for rechargeable Li batteries [J]. Chemistry of Materials, 2010, 22 (3): 587
doi: 10.1021/cm901452z
2 Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage [J]. Nature Chemistry, 2015, 7(1): 19
doi: 10.1038/nchem.2085 pmid: 25515886
3 Yin Y X, Xin S, Guo Y G, et al. Lithium-sulfur batteries: electrochemistry, materials, and prospects [J]. Angewandte Chemie-International Edition, 2013, 52(50): 13186
doi: 10.1002/anie.201304762
4 Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O-2 and Li-S batteries with high energy storage [J]. Nature Materials, 2012, 11(1): 19
doi: 10.1038/nmat3191
5 Manthiram A, Fu Y Z, Chung S H, et al. Rechargeable lithium-sulfur batteries [J]. Chemical Reviews, 2014, 114(23): 11751
doi: 10.1021/cr500062v pmid: 25026475
6 Bai S Y, Liu X Z, Zhu K, et al. Metal-organic framework-based separator for lithium-sulfur batteries [J]. Nature Energy, 2016, 1: 16094
doi: 10.1038/nenergy.2016.94
7 Seh Z W, Sun Y M, Zhang Q F, et al. Designing high-energy lithium-sulfur batteries [J]. Chemical Society Reviews, 2016, 45(20): 5605
pmid: 27460222
8 Wang L Y, Zhu X Y, Guan Y P, et al. ZnO/carbon framework derived from metal-organic frameworks as a stable host for lithium metal anodes [J]. Energy Storage Materials, 2018, 11: 191
doi: 10.1016/j.ensm.2017.10.016
9 Ji X L, Nazar L F. Advances in Li-S batteries [J]. Journal of Materials Chemistry, 2010, 20(44): 9821
doi: 10.1039/b925751a
10 Manthiram A, Fu Y Z, Su Y S. Challenges and prospects of lithium-sulfur batteries [J]. Accounts of Chemical Research, 2013, 46(5): 1125
doi: 10.1021/ar300179v pmid: 23095063
11 Fang R P, Zhao S Y, Sun Z H, et al. More reliable lithium-sulfur batteries: status, solutions and prospects [J]. Advanced Materials, 2017, 29(48): 1
12 Jeon B H, Yeon J H, Kim K M, et al. Preparation and electrochemical properties of lithium-sulfur polymer batteries [J]. Journal of Power Sources, 2002, 109(1): 89
doi: 10.1016/S0378-7753(02)00050-2
13 Liang X, Hart C, Pang Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries [J]. Nature Communications, 2015, 6: 5682
doi: 10.1038/ncomms6682 pmid: 25562485
14 Peng H J, Huang J Q, Cheng X B, et al. Review on high-loading and high-energy lithium-sulfur batteries [J]. Advanced Energy Materials, 2017, 7(24): 1700260
doi: 10.1002/aenm.v7.24
15 Scrosati B, Hassoun J, Sun Y K. Lithium-ion batteries. A look into the future [J]. Energy & Environmental Science, 2011, 4(9): 3287
16 Xing Z Y, Tan G Q, Yuan Y F, et al. Consolidating lithiothermic-ready transition metals for Li2S-based cathodes [J]. Advanced Materials, 2020, 32(31): 002403
17 Zhang S, Ueno K, Dokko K, et al. Recent advances in electrolytes for lithium-sulfur batteries [J]. Advanced Energy Materials, 2015, 5(16): 1500117
doi: 10.1002/aenm.201500117
18 Zhang J, Yang C P, Yin Y X, et al. Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries [J]. Advanced Materials, 2016, 28(43): 9539
doi: 10.1002/adma.201602913
19 Hu H, Cheng H Y, Liu Z F, et al. In situ polymerized PAN-assisted S/C nanosphere with enhanced high-power performance as cathode for lithium/sulfur batteries [J]. Nano Letters, 2015, 15(8): 5116
doi: 10.1021/acs.nanolett.5b01294 pmid: 26200760
20 Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries [J]. Nature Materials, 2009, 8(6): 500
doi: 10.1038/nmat2460
21 Mikhaylik Y V, Akridge J R. Polysulfide shuttle study in the Li/S battery system [J]. Journal of the Electrochemical Society, 2004, 151(11): A1969
doi: 10.1149/1.1806394
22 He X M, Ren J G, Wang L, et al. Expansion and shrinkage of the sulfur composite electrode in rechargeable lithium batteries [J]. Journal of Power Sources, 2009, 190(1): 154
doi: 10.1016/j.jpowsour.2008.07.034
23 Ryu H S, Ahn H J, Kim K W, et al. Self-discharge characteristics of lithium/sulfur batteries using TEGDME liquid electrolyte [J]. Electrochimica Acta, 2006, 52(4): 1563
doi: 10.1016/j.electacta.2006.01.086
24 Yang X, Zhang L, Zhang F, et al. Sulfur-Infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries [J]. Acs Nano, 2014, 8(5): 5208
doi: 10.1021/nn501284q pmid: 24749945
25 Titirici M M, White R J, Brun N, et al. Sustainable carbon materials [J]. Chemical Society Reviews, 2015, 44(1): 250
doi: 10.1039/C4CS00232F
26 Liu Y T, Han D D, Wang L, et al. NiCo2O4 nanofibers as carbon-free sulfur immobilizer to fabricate sulfur-based composite with high volumetric capacity for lithium-sulfur battery [J]. Advanced Energy Materials, 2019, 9(11): 1803477
doi: 10.1002/aenm.v9.11
27 Li Q, Zhang Z, Zhang K, et al. Synthesis and electrochemical performance of TiO2-sulfur composite cathode materials for lithium-sulfur batteries [J]. Journal of Solid State Electrochemistry, 2013, 17(11): 2959
doi: 10.1007/s10008-013-2203-3
28 Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Advanced Materials, 2011, 23(37): 4248
doi: 10.1002/adma.201102306
29 Wang A N, Chen Y X, Liu L, et al. Sulfur nanoparticles/Ti3C2T x MXene with an optimum sulfur content as a cathode for highly stable lithium-sulfur batteries [J]. Dalton Transactions, 2021, 50(16): 5574
doi: 10.1039/D1DT00381J
30 Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage [J]. Nature Reviews Materials, 2017, 2(2): 16098
doi: 10.1038/natrevmats.2016.98
31 Xiong D B, Li X F, Bai Z M, et al. Recent advances in layered Ti3C2T x MXene for electrochemical energy storage [J]. Small, 2018, 14(17): 1703419
doi: 10.1002/smll.v14.17
32 Naguib M, Mochalin V N, Barsoum M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials [J]. Advanced Materials, 2014, 26(7): 992
doi: 10.1002/adma.201304138
33 Song J J, Su D W, Xie X Q, et al. Immobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries [J]. Acs Applied Materials & Interfaces, 2016, 8(43): 29427
34 Bao W Z, Liu L, Wang C Y, et al. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries [J]. Advanced Energy Materials, 2018, 8(13): 1702485
doi: 10.1002/aenm.v8.13
35 Ye Z Q, Jiang Y, Li L, et al. Self-assembly of 0D-2D heterostructure electrocatalyst from MOF and MXene for boosted lithium polysulfide conversion reaction [J]. Advanced Materials, 2021, 33(33): 2101204
doi: 10.1002/adma.v33.33
36 Xiong D B, Huang S Z, Fang D L, et al. Porosity engineering of MXene membrane towards polysulfide inhibition and fast lithium ion transportation for lithium-sulfur batteries [J]. Small, 2021, 17(34): 2007442
doi: 10.1002/smll.v17.34
37 Song F, Li G H, Zhu Y S, et al. Rising from the horizon: three-dimensional functional architectures assembled with MXene nanosheets [J]. Journal of Materials Chemistry A, 2020, 8(36): 18538
doi: 10.1039/D0TA06222G
38 Jana M L, Xu R, Cheng X B, et al. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries [J]. Energy & Environmental Science, 2020, 13(4): 1049
39 Wang Y T, Shen J L, Xu L C, et al. Sulfur-functionalized vanadium carbide MXene (V2CS2) as a promising anchoring material for lithium-sulfur batteries [J]. Physical Chemistry Chemical Physics, 2019, 21(34): 18559
doi: 10.1039/C9CP03419F
40 Liu Y H, Wang C Y, Yang S L, et al. 3D MXene architectures as sulfur hosts for high-performance lithium-sulfur batteries [J]. Journal of Energy Chemistry, 2022, 66: 429
doi: 10.1016/j.jechem.2021.08.040
41 Li W, Liu J, Zhao D Y. Mesoporous materials for energy conversion and storage devices [J]. Nature Reviews Materials, 2016, 1(6): 16023
doi: 10.1038/natrevmats.2016.23
42 Yang C Y, Li Y, Peng W C, et al. In situ N-doped CoS2 anchored on MXene toward an efficient bifunctional catalyst for enhanced lithium-sulfur batteries [J]. Chemical Engineering Journal, 2022, 427(2): 131792
doi: 10.1016/j.cej.2021.131792
43 Meng R J, Deng Q Y, Peng C X, et al. Two-dimensional organic-inorganic heterostructures of in situ-grown layered COF on Ti3C2 MXene nanosheets for lithium-sulfur batteries [J]. Nano Today, 2020, 35: 100991
doi: 10.1016/j.nantod.2020.100991
44 Qiu S Y, Wang C, Jiang Z X, et al. Rational design of MXene@TiO2 nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium-sulfur batteries [J]. Nanoscale, 2020, 12(32): 16678
doi: 10.1039/D0NR03528A
45 Ye Z Q, Jiang Y, Qian J, et al. Exceptional adsorption and catalysis effects of hollow polyhedra/carbon nanotube confined CoP nanoparticles superstructures for enhanced lithium-sulfur batteries [J]. Nano Energy, 2019, 64: 103963
doi: 10.1016/j.nanoen.2019.103963
46 Jiang G Y, Zheng N, Chen X, et al. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries [J]. Chemical Engineering Journal, 2019, 373: 1309
doi: 10.1016/j.cej.2019.05.119
47 Wang H, Liu X, Niu P, et al. Porous two-dimensional materials for photocatalytic and electrocatalytic applications [J]. Matter, 2020, 2(6): 1377
doi: 10.1016/j.matt.2020.04.002
48 Shi H D, Zhang C J, Lu P F, et al. Conducting and lithiophilic MXene/graphene framework for high-capacity, dendrite-free lithium-metal anodes [J]. Acs Nano, 2019, 13(12): 14308
doi: 10.1021/acsnano.9b07710 pmid: 31751116
49 Shi H D, Yue M, Zhang C J, et al. 3D Flexible, conductive, and recyclable Ti3C2T x MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode [J]. Acs Nano, 2020, 14(7): 8678
doi: 10.1021/acsnano.0c03042
50 Bao W Z, Xie X Q, Xu J, et al. Confined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium-sulfur battery [J]. Chemistry-a European Journal, 2017, 23(51): 12613
doi: 10.1002/chem.201702387
51 Zhang Y L, Mu Z J, Yang C, et al. Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries [J]. Advanced Functional Materials, 2018, 28(38): 1707578
doi: 10.1002/adfm.v28.38
52 Wang W, Huai L Y, Wu S Y, et al. Ultrahigh-volumetric-energy-density lithium-sulfur batteries with lean electrolyte enabled by cobalt-doped MoSe2/Ti3C2T x MXene bifunctional catalyst [J]. Acs Nano, 2021, 15(7): 11619
doi: 10.1021/acsnano.1c02047 pmid: 34247479
53 Wen C Y, Zheng X Z, Li X Y, et al. Rational design of 3D hierarchical MXene@AlF3/Ni(OH)2 nanohybrid for high-performance lithium-sulfur batteries [J]. Chemical Engineering Journal, 2021, 409: 128102
doi: 10.1016/j.cej.2020.128102
54 Zhang L, Bi J Y, Zhao Z K, et al. Sulfur@self-assembly 3D MXene hybrid cathode material for lithium-sulfur batteries [J]. Electrochimica Acta, 2021, 370: 137759
doi: 10.1016/j.electacta.2021.137759
55 Zhang B, Luo C, Zhou G M, et al. Lamellar MXene composite aerogels with sandwiched carbon nanotubes enable stable lithium-sulfur batteries with a high sulfur loading [J]. Advanced Functional Materials, 2021, 31(26): 2100793
doi: 10.1002/adfm.v31.26
56 Tian Y X, Huang H W, Chen C, et al. MXene Nanoflakes confined in multichannel carbon nanofibers as electrocatalysts for lithium-sulfur batteries [J]. Journal of Electrochemical Energy Conversion and Storage, 2022, 19(1): 010906
57 Liu Y E, Zhang M G, Gao Y N, et al. Regulate the reaction kinetic rate of lithium-sulfur battery by rational designing of TEMPO-oxidized cellulose nanofibers/rGO porous aerogel with monolayer MXene coating [J]. Journal of Alloys and Compounds, 2022, 898: 1
58 Hou R H, Zhang S J, Zhang Y S, et al. A "three-region" configuration for enhanced electrochemical kinetics and high-areal capacity lithium-sulfur batteries [J]. Advanced Functional Materials, 2022, 32(19): 2200302
doi: 10.1002/adfm.v32.19
59 Xu M Y, Liang L, Qi J, et al. Intralayered ostwald ripening-induced self-catalyzed growth of CNTs on MXene for robust lithium-sulfur batteries [J]. Small, 2021, 17(17): 2007446
doi: 10.1002/smll.v17.17
60 Song Y Z, Sun Z T, Fan Z D, et al. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry [J]. Nano Energy, 2020, 70: 104555
doi: 10.1016/j.nanoen.2020.104555
61 Wang T, Luo D, Zhang Y G, et al. Hierarchically porous Ti3C2 MXene with tunable active edges and unsaturated coordination bonds for superior lithium-sulfur batteries [J]. Acs Nano, 2021, 15(12): 19457
doi: 10.1021/acsnano.1c06213
62 Xiong C, Zhu G Y, Jiang H R, et al. Achieving multiplexed functionality in a hierarchical MXene-based sulfur host for high-rate, high-loading lithium-sulfur batteries [J]. Energy Storage Materials, 2020, 33: 147
doi: 10.1016/j.ensm.2020.08.006
63 Wang H, He S A, Cui Z, et al. Enhanced kinetics and efficient activation of sulfur by ultrathin MXene coating S-CNTs porous sphere for highly stable and fast charging lithium-sulfur batteries [J]. Chemical Engineering Journal, 2021, 420: 129693
doi: 10.1016/j.cej.2021.129693
64 Zhao W L, Lei Y J, Zhu Y P, et al. Hierarchically structured Ti3C2T x MXene paper for Li-S batteries with high volumetric capacity [J]. Nano Energy, 2021, 86(1): 106120
doi: 10.1016/j.nanoen.2021.106120
65 Wang J L, Zhang Z, Yan X F, et al. Rational design of porous N-Ti3C2 MXene@CNT microspheres for high cycling stability in li-s battery [J]. Nano-Micro Letters, 2020, 12(1): 40
doi: 10.1007/s40820-020-0368-8
[1] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[7] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[8] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[9] HE Ying, LI Chaoqun, CHEN Xiaoli, LONG Zhimei, LAI Jiaqi, SHAO Bin, MA Yilong, CHEN Dengming, DONG Jiling. Recent Development for Preparation Processes of Sm2Fe17N x Powders with High Magnetic Properties[J]. 材料研究学报, 2022, 36(5): 321-331.
[10] SHAO Siwu, ZHENG Yuting, AN Kang, HUANG Yabo, CHEN Liangxian, LIU Jinlong, WEI Junjun, LI Chengming. Progress on Application of Bias Technology for Preparation of Diamond Films[J]. 材料研究学报, 2022, 36(3): 161-174.
[11] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[12] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[13] ZHAO Ning, JIAO Da, ZHU Yankun, LIU Dexue, LIU Zengqian, ZHANG Zhefeng. Material Science Mechanism for Efficient Protection of Natural Armor[J]. 材料研究学报, 2022, 36(1): 1-7.
[14] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[15] SONG Xiaolong, LUO Weijing, NAN Yanli. A Review for Synthesis and Applications of Carbon Nanohorns[J]. 材料研究学报, 2021, 35(6): 401-410.
No Suggested Reading articles found!