|
|
A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials |
JIANG Shuimiao1,2, MING Kaisheng1,2, ZHENG Shijian1,2() |
1.School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China 2.Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Tianjin 300401, China |
|
Cite this article:
JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials. Chinese Journal of Materials Research, 2023, 37(5): 321-331.
|
Abstract The theory of grain boundary segregation was introduced, and three classical models of equilibrium segregation were summarized, while the theory related with grain boundary segregation engineering and the influence of grain boundary segregation on mechanical properties of materials were also briefly introduced. The relationship between grain boundary segregation and interface phase was discussed. The interfacial phases can be divided into six types according to the structural characteristics of interfaces in atomic scale, and the interfacial phase transitions determined by grain boundary thermodynamics were introduced. The interfacial phase transformation leads to the formation of new structures at grain boundaries, which may either improve the properties of materials or have adverse effects on them. The type VI interfacial phase at grain boundary (such as amorphous intergranular film) inhibits the nucleation of crack and reduces the damage of grain boundary, however, the type II and type III interfacial phases that weaken the atomic bond strength at the grain boundary (such as the bi-atomic interfacial phase at the grain boundary of Ni alloy with Bi component) produce grain boundary embrittlement. At the same time, nanocrystalline metal materials have high strength but poor thermal stability and plasticity, which has always been the focus of research. The interfacial phase can significantly reduce grain boundary energy and pin grain boundaries rather than segregates at grain boundaries. Therefore, the interfacial phase can significantly improve the thermal stability of nanocrystalline metallic materials. As the sites for nucleation and absorption of dislocations, the amorphous intercrystalline film (VI interface phase) can improve the ductility of nanomaterials. Whilst, amorphous intercrystalline films can improve the shear resistance of grain boundaries and inhibit grain sliding and rotation of nanocrystalline metallic materials, thus further improving the plasticity of nanocrystalline metallic materials. Finally, the effects of grain boundary segregation and interface on material properties were also summarized and the future development was prospected.
|
Received: 22 October 2021
|
|
Fund: National Natural Science Foundation of China(51771201);National Natural Science Foundation of China(52071124);Natural Science Foundation of Hebei Province(E2021202135);Natural Science Foundation of Tianjin(20JCZDJC00440);the Open Research Fund from the State Key Laboratory of Rolling and Automation, Northeastern University(2020RALKFKT002) |
1 |
Lejček P, Hofmann S, Paidar V. Solute segregation and classification of [100] tilt grain boundaries in α-iron: Consequences for grain boundary engineering [J]. Acta Mater., 2003, 51(13): 395
|
2 |
Millett P C, Selvam R P, Saxena A. Stabilizing nanocrystalline materials with dopants [J]. Acta Mater., 2007, 55(7): 2329
doi: 10.1016/j.actamat.2006.11.028
|
3 |
Hondros E D. The influence of phosphorus in dilute solid solution on the absolute surface and grain boundary energies of iron [J]. Proc. Roy. Soc. Lond., 1965, 286A(1407) : 479
|
4 |
Wynblatt P, Chatain D. Anisotropy of segregation at grain boundaries and surfaces [J]. Metall. Mater. Trans., 2007, 38A(9) : 438
|
5 |
Kirchheim R. Grain coarsening inhibited by solute segregation [J]. Acta Mater., 2002, 50(2): 413
doi: 10.1016/S1359-6454(01)00338-X
|
6 |
Kirchheim R. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background [J]. Acta Mater., 2007, 55(15): 5129
doi: 10.1016/j.actamat.2007.05.047
|
7 |
Tang M, Carter W C, Cannon R M. Diffuse interface model for structural transitions of grain boundaries [J]. Phys. Rev., 2006, 73B(2) : 024102
|
8 |
McLean D, Maradudin A. Grain boundaries in metals [J]. Phys. Today, 1958, 11(7): 35
|
9 |
Lejček P, Schneeweiss O. Solute segregation at ordered grain boundaries [J]. Surf. Sci., 2001, 487(1-3): 210
doi: 10.1016/S0039-6028(01)01100-1
|
10 |
Kikuchi R, Cahn J W. Grain boundaries with impurities in a two-dimensional lattice-gas model [J]. Phys. Rev., 1987, 36B(1) : 418
|
11 |
Mishin Y, Boettinger W J, Warren J A, et al. Thermodynamics of grain boundary premelting in alloys. I. Phase-field modeling [J]. Acta Mater., 2009, 57(13): 3771
doi: 10.1016/j.actamat.2009.04.044
|
12 |
Watanabe T, Tsurekawa S. The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering [J]. Acta Mater., 1999, 47(15-16): 4171
doi: 10.1016/S1359-6454(99)00275-X
|
13 |
Raabe D, Herbig M, Sandlöbes S, et al. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces [J]. Curr. Opin. Solid State Mater. Sci., 2014, 18(4): 253
doi: 10.1016/j.cossms.2014.06.002
|
14 |
Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. J. Am. Chem. Soc., 1918, 40(9): 1361
doi: 10.1021/ja02242a004
|
15 |
Lejček P, Hofmann S. Thermodynamics and structural aspects of grain boundary segregation [J]. Crit. Rev. Solid State Mater. Sci., 1995, 20(1): 1
doi: 10.1080/10408439508243544
|
16 |
Molodov D A, Czubayko U, Gottstein G, et al. Acceleration of grain boundary motion in Al by small additions of Ga [J]. Philos. Mag. Lett., 1995, 72(6): 361
doi: 10.1080/09500839508242475
|
17 |
Luo J, Cheng H K, Asl K M, et al. The role of a bilayer interfacial phase on liquid metal embrittlement [J]. Science, 2011, 333(6050): 1730
doi: 10.1126/science.1208774
pmid: 21940889
|
18 |
Wu X B, You Y W, Kong X S, et al. First-principles determination of grain boundary strengthening in tungsten: Dependence on grain boundary structure and metallic radius of solute [J]. Acta Mater., 2016, 120: 315
doi: 10.1016/j.actamat.2016.08.048
|
19 |
Raabe D, Sandlöbes S, Millán J, et al. Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite [J]. Acta Mater., 2013, 61(16): 6132
doi: 10.1016/j.actamat.2013.06.055
|
20 |
Wu R Q, Freeman A J, Olson G B. First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion [J]. Science, 1994, 265(5170): 376
pmid: 17838041
|
21 |
Duscher G, Chisholm M F, Alber U, et al. Bismuth-induced embrittlement of copper grain boundaries [J]. Nat. Mater., 2004, 3(9): 621
pmid: 15322533
|
22 |
Buban J P, Mizoguchi T, Shibata N, et al. Zr segregation and associated Al vacancies in alumina grain boundaries [J]. J. Ceram. Soc. Jpn., 2011, 119(1395): 840
doi: 10.2109/jcersj2.119.840
|
23 |
Chen C L, Lv S H, Wang Z C, et al. Oxygen segregation at coherent grain boundaries of cubic boron nitride [J]. Appl. Phys. Lett., 2013, 102(9): 091607
|
24 |
Wang Z C, Saito M, McKenna K P, et al. Atom-resolved imaging of ordered defect superstructures at individual grain boundaries [J]. Nature, 2011, 479(7373): 380
doi: 10.1038/nature10593
|
25 |
Turlo V, Rupert T J. Dislocation-assisted linear complexion formation driven by segregation [J]. Scr. Mater., 2018, 154: 25
doi: 10.1016/j.scriptamat.2018.05.014
|
26 |
Sigle W, Richter G, Rühle M, et al. Insight into the atomic-scale mechanism of liquid metal embrittlement [J]. Appl. Phys. Lett., 2006, 89(12): 121911
doi: 10.1063/1.2356322
|
27 |
Shi X M, Luo J. Grain boundary wetting and prewetting in Ni-doped Mo [J]. Appl. Phys. Lett., 2009, 94(25): 251908
doi: 10.1063/1.3155443
|
28 |
Cantwell P R, Frolov T, Rupert T J, et al. Grain boundary complexion transitions [J]. Annu. Rev. Mater. Res., 2020, 50: 465
doi: 10.1146/matsci.2020.50.issue-1
|
29 |
Luo J, Shi X M. Grain boundary disordering in binary alloys [J]. Appl. Phys. Lett., 2008, 92(10): 101901
doi: 10.1063/1.2892631
|
30 |
Luo J. Current opinion in solid state [J]. Mater. Sci., 2008, 12: 81
|
31 |
Kuzmina M, Herbig M, Ponge D, et al. Linear complexions: Confined chemical and structural states at dislocations [J]. Science, 2015, 349(6252): 1080
doi: 10.1126/science.aab2633
pmid: 26339026
|
32 |
Lei T J, Shin J, Gianola D S, et al. Bulk nanocrystalline Al alloys with hierarchical reinforcement structures Via grain boundary segregation and complexion formation [J]. Acta Mater., 2021, 221: 117394
doi: 10.1016/j.actamat.2021.117394
|
33 |
Turlo V, Rupert T J. Interdependent linear complexion structure and dislocation mechanics in Fe-Ni [J]. Crystals, 2020, 10(12): 1128
doi: 10.3390/cryst10121128
|
34 |
Turlo V, Rupert T J. Grain boundary complexions and the strength of nanocrystalline metals: Dislocation emission and propagation [J]. Acta Mater., 2018, 151: 100
doi: 10.1016/j.actamat.2018.03.055
|
35 |
Khalajhedayati A, Pan Z L, Rupert T J. Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility [J]. Nat. Commun., 2016, 7(1): 10802
doi: 10.1038/ncomms10802
|
36 |
Chen B, Zhu L L, Xin Y C, et al. Grain rotation in plastic deformation [J]. Quantum Beam Sci., 2019, 3(3): 17
doi: 10.3390/qubs3030017
|
37 |
Naik S N, Walley S M. The hall–petch and inverse hall-petch relations and the hardness of nanocrystalline metals [J]. J. Mater. Sci., 2020, 55(7): 2661
doi: 10.1007/s10853-019-04160-w
|
38 |
Tang F, Gianola D S, Moody M P, et al. Observations of grain boundary impurities in nanocrystalline Al and their influence on microstructural stability and mechanical behaviour [J]. Acta Mater., 2012, 60(3): 1038
doi: 10.1016/j.actamat.2011.10.061
|
39 |
Hu J, Shi Y N, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J]. Science, 2017, 355(6331): 1292
doi: 10.1126/science.aal5166
pmid: 28336664
|
40 |
Yang W F, Gong M Y, Yao J H, et al. Hardening induced by dislocation core spreading at disordered interface in Cu/Nb multilayers [J]. Scr. Mater., 2021, 200: 113917
doi: 10.1016/j.scriptamat.2021.113917
|
41 |
Feng L, Hao R, Lambros J, et al. The influence of dopants and complexion transitions on grain boundary fracture in alumina [J]. Acta Mater., 2018, 142: 121
doi: 10.1016/j.actamat.2017.09.002
|
42 |
Farkas D, Van Petegem S, Derlet P M, et al. Dislocation activity and nano-void formation near crack tips in nanocrystalline Ni [J]. Acta Mater., 2005, 53(11): 3115
doi: 10.1016/j.actamat.2005.02.012
|
43 |
Schuler J D, Barr C M, Heckman N M, et al. In situ high-cycle fatigue reveals importance of grain boundary structure in nanocrystalline Cu-Zr [J]. JOM, 2019, 71(4): 1221
doi: 10.1007/s11837-019-03361-7
|
44 |
Pan Z L, Rupert T J. Amorphous intergranular films as toughening structural features [J]. Acta Mater., 2015, 89: 205
doi: 10.1016/j.actamat.2015.02.012
|
45 |
Balbus G H, Wang F L, Gianola D S. Suppression of shear localization in nanocrystalline Al-Ni-Ce Via segregation engineering [J]. Acta Mater., 2020, 188: 63
doi: 10.1016/j.actamat.2020.01.041
|
46 |
Wang Y M, Li J, Hamza A V, et al. Ductile crystalline-amorphous nanolaminates [J]. Proc. Natl. Acad. Sci. USA, 2007, 104(27): 11155
pmid: 17592136
|
47 |
Zheng S J, Ma X L, Yamamoto T, et al. Atomistic study of abnormal grain growth structure in BaTiO3 by transmission electron microscopy and scanning transmission electron microscopy [J]. Acta Mater., 2013, 61(7): 2298
doi: 10.1016/j.actamat.2012.12.046
|
48 |
Weissmüller J. Alloy effects in nanostructures [J]. Nanostruct. Mater., 1993, 3(1-6): 261
doi: 10.1016/0965-9773(93)90088-S
|
49 |
Khalajhedayati A, Rupert T J. High-temperature stability and grain boundary complexion formation in a nanocrystalline Cu-Zr alloy [J]. JOM, 2015, 67(12): 2788
doi: 10.1007/s11837-015-1644-9
|
50 |
Ahadi A, Kalidindi A R, Sakurai J, et al. The role of W on the thermal stability of nanocrystalline nitiwx thin films [J]. Acta Mater., 2018, 142: 181
doi: 10.1016/j.actamat.2017.09.056
|
51 |
Ding J, Shang Z, Zhang Y F, et al. Tailoring the thermal stability of nanocrystalline Ni alloy by thick grain boundaries [J]. Scr. Mater., 2020, 182: 21
doi: 10.1016/j.scriptamat.2020.02.032
|
52 |
Pan Z L, Rupert T J. Effect of grain boundary character on segregation-induced structural transitions [J]. Phys. Rev., 2016, 93B(13) : 134113
|
53 |
Grigorian C M, Rupert T J. Thick amorphous complexion formation and extreme thermal stability in ternary nanocrystalline Cu-Zr-Hf alloys [J]. Acta Mater., 2019, 179: 172
doi: 10.1016/j.actamat.2019.08.031
|
54 |
Schuler J D, Donaldson O K, Rupert T J. Amorphous complexions enable a new region of high temperature stability in nanocrystalline Ni-W [J]. Scr. Mater., 2018, 154: 49
doi: 10.1016/j.scriptamat.2018.05.023
|
55 |
Balbus G H, Kappacher J, Sprouster D J, et al. Disordered interfaces enable high temperature thermal stability and strength in a nanocrystalline aluminum alloy [J]. Acta Mater., 2021, 215: 116973
doi: 10.1016/j.actamat.2021.116973
|
62 |
Lejček P, translated by Zheng L, Wang M Q. Grain Boundary Segregation in Metals [M]. Beijing: Tsinghua University Press, 2020: 41
|
|
Lejček P著, 郑 磊, 王民庆 译. 金属中的晶界偏聚 [M]. 北京: 清华大学出版社, 2020: 41
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|