Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (5): 321-331    DOI: 10.11901/1005.3093.2021.599
REVIEWS Current Issue | Archive | Adv Search |
A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials
JIANG Shuimiao1,2, MING Kaisheng1,2, ZHENG Shijian1,2()
1.School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
2.Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Tianjin 300401, China
Cite this article: 

JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials. Chinese Journal of Materials Research, 2023, 37(5): 321-331.

Download:  HTML  PDF(11006KB) 
Export:  BibTeX | EndNote (RIS)      

The theory of grain boundary segregation was introduced, and three classical models of equilibrium segregation were summarized, while the theory related with grain boundary segregation engineering and the influence of grain boundary segregation on mechanical properties of materials were also briefly introduced. The relationship between grain boundary segregation and interface phase was discussed. The interfacial phases can be divided into six types according to the structural characteristics of interfaces in atomic scale, and the interfacial phase transitions determined by grain boundary thermodynamics were introduced. The interfacial phase transformation leads to the formation of new structures at grain boundaries, which may either improve the properties of materials or have adverse effects on them. The type VI interfacial phase at grain boundary (such as amorphous intergranular film) inhibits the nucleation of crack and reduces the damage of grain boundary, however, the type II and type III interfacial phases that weaken the atomic bond strength at the grain boundary (such as the bi-atomic interfacial phase at the grain boundary of Ni alloy with Bi component) produce grain boundary embrittlement. At the same time, nanocrystalline metal materials have high strength but poor thermal stability and plasticity, which has always been the focus of research. The interfacial phase can significantly reduce grain boundary energy and pin grain boundaries rather than segregates at grain boundaries. Therefore, the interfacial phase can significantly improve the thermal stability of nanocrystalline metallic materials. As the sites for nucleation and absorption of dislocations, the amorphous intercrystalline film (VI interface phase) can improve the ductility of nanomaterials. Whilst, amorphous intercrystalline films can improve the shear resistance of grain boundaries and inhibit grain sliding and rotation of nanocrystalline metallic materials, thus further improving the plasticity of nanocrystalline metallic materials. Finally, the effects of grain boundary segregation and interface on material properties were also summarized and the future development was prospected.

Key words:  review      foundational discipline in materials science      grain boundary segregation      complexion      thermal stability      mechanical properties     
Received:  22 October 2021     
ZTFLH:  TB331  
Fund: National Natural Science Foundation of China(51771201);National Natural Science Foundation of China(52071124);Natural Science Foundation of Hebei Province(E2021202135);Natural Science Foundation of Tianjin(20JCZDJC00440);the Open Research Fund from the State Key Laboratory of Rolling and Automation, Northeastern University(2020RALKFKT002)

URL:     OR

Fig.1  Example and model diagram of six Dillon Hammer complexions[17, 21, 26, 27], (a~c) clean grain boundry, (d~f) monolayer, (g~i) bilayer, (j~l) trilayer, (m~o) nanolayer, (p~r) wetting
Fig.2  Plot of free energy of grain boundary versus temperature and pressure[28]
Fig.3  Effect of different grain boundary structures on dislocation emission and slip of Cu-Zr alloys[34] (a) quilibrium grain boundary structures obtained using the hybrid MD/MC method, (b) atomic shear stress distribution during dislocation propagation simulations at 3% applied shear strain,black arrows denote local regions of low stress, (c) relative changes of the critical stress required for dislocation emission and propagation, as measured by the MD simulation
Fig.4  Improving the interfacial stability of nanostructured materials by introducing different complexions[39, 40] (a, b) three-dimensional atom probe tomography (APT) reconstruction of the nanograined Ni-Mo alloy, (c) softening and hardening in the nanograined Ni-Mo alloys, Cu/Nb composites with amorphous complexions, (d) TEM image of Cu/Nb composite, (e) TEM image of amorphous complexions, (f) schematic diagram of interaction between amorphous complexions and dislocations
Fig.5  Cumulative plot of Keff via the J integral method of Al2O3 sample with different complexions[41]
Fig.6  Crack nucleation and extension simulated in Cu-Zr alloy during shear deformation[44] (a) clean grain boundaries, (b) complexions with the thickness of 1 nm, (c) complexions with the thickness of 3.8 nm
Fig.7  Complexions of polycrystalline Ni grain boundaries with Bi-rich diatomic layers[17] (a) initial grain boundary, (b) (c) brittle fracture along the grain boundary, (d) grain boundary model
Fig.8  Cu-Zr alloys with different complexions showing different deformation behaviour after compression[35] (a) pure Cu, (b) Cu-Zr alloy with ordered complexions, (c) Cu-Zr alloy with amorphous complexions
Fig.9  Grain boundary motion under constant driving force[16]
Fig.10  Interfacial atomic structure of BaTiO3[47] (a, b) high-resolution HAADF-STEM images of the interfacial phase at (111) grain boundaries on the [110] and [121¯] crystal band axes, (c) EDS showing Ti-rich interfacial phase, (d) EFTEM showing Ti-rich intergranular phase
Fig.11  Characterisation of the Ni-W alloy interfacial phase and grain size distribution at different temperatures[54] (a, b) high resolution TEM images of 1 nm thick amorphous intergranular films, (c) grain size analysis of the Ni-6%W (atomic fraction) electrodeposited alloys after annealing for 1 h at different temperatures
1 Lejček P, Hofmann S, Paidar V. Solute segregation and classification of [100] tilt grain boundaries in α-iron: Consequences for grain boundary engineering [J]. Acta Mater., 2003, 51(13): 395
2 Millett P C, Selvam R P, Saxena A. Stabilizing nanocrystalline materials with dopants [J]. Acta Mater., 2007, 55(7): 2329
doi: 10.1016/j.actamat.2006.11.028
3 Hondros E D. The influence of phosphorus in dilute solid solution on the absolute surface and grain boundary energies of iron [J]. Proc. Roy. Soc. Lond., 1965, 286A(1407) : 479
4 Wynblatt P, Chatain D. Anisotropy of segregation at grain boundaries and surfaces [J]. Metall. Mater. Trans., 2007, 38A(9) : 438
5 Kirchheim R. Grain coarsening inhibited by solute segregation [J]. Acta Mater., 2002, 50(2): 413
doi: 10.1016/S1359-6454(01)00338-X
6 Kirchheim R. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background [J]. Acta Mater., 2007, 55(15): 5129
doi: 10.1016/j.actamat.2007.05.047
7 Tang M, Carter W C, Cannon R M. Diffuse interface model for structural transitions of grain boundaries [J]. Phys. Rev., 2006, 73B(2) : 024102
8 McLean D, Maradudin A. Grain boundaries in metals [J]. Phys. Today, 1958, 11(7): 35
9 Lejček P, Schneeweiss O. Solute segregation at ordered grain boundaries [J]. Surf. Sci., 2001, 487(1-3): 210
doi: 10.1016/S0039-6028(01)01100-1
10 Kikuchi R, Cahn J W. Grain boundaries with impurities in a two-dimensional lattice-gas model [J]. Phys. Rev., 1987, 36B(1) : 418
11 Mishin Y, Boettinger W J, Warren J A, et al. Thermodynamics of grain boundary premelting in alloys. I. Phase-field modeling [J]. Acta Mater., 2009, 57(13): 3771
doi: 10.1016/j.actamat.2009.04.044
12 Watanabe T, Tsurekawa S. The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering [J]. Acta Mater., 1999, 47(15-16): 4171
doi: 10.1016/S1359-6454(99)00275-X
13 Raabe D, Herbig M, Sandlöbes S, et al. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces [J]. Curr. Opin. Solid State Mater. Sci., 2014, 18(4): 253
doi: 10.1016/j.cossms.2014.06.002
14 Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. J. Am. Chem. Soc., 1918, 40(9): 1361
doi: 10.1021/ja02242a004
15 Lejček P, Hofmann S. Thermodynamics and structural aspects of grain boundary segregation [J]. Crit. Rev. Solid State Mater. Sci., 1995, 20(1): 1
doi: 10.1080/10408439508243544
16 Molodov D A, Czubayko U, Gottstein G, et al. Acceleration of grain boundary motion in Al by small additions of Ga [J]. Philos. Mag. Lett., 1995, 72(6): 361
doi: 10.1080/09500839508242475
17 Luo J, Cheng H K, Asl K M, et al. The role of a bilayer interfacial phase on liquid metal embrittlement [J]. Science, 2011, 333(6050): 1730
doi: 10.1126/science.1208774 pmid: 21940889
18 Wu X B, You Y W, Kong X S, et al. First-principles determination of grain boundary strengthening in tungsten: Dependence on grain boundary structure and metallic radius of solute [J]. Acta Mater., 2016, 120: 315
doi: 10.1016/j.actamat.2016.08.048
19 Raabe D, Sandlöbes S, Millán J, et al. Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite [J]. Acta Mater., 2013, 61(16): 6132
doi: 10.1016/j.actamat.2013.06.055
20 Wu R Q, Freeman A J, Olson G B. First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion [J]. Science, 1994, 265(5170): 376
pmid: 17838041
21 Duscher G, Chisholm M F, Alber U, et al. Bismuth-induced embrittlement of copper grain boundaries [J]. Nat. Mater., 2004, 3(9): 621
pmid: 15322533
22 Buban J P, Mizoguchi T, Shibata N, et al. Zr segregation and associated Al vacancies in alumina grain boundaries [J]. J. Ceram. Soc. Jpn., 2011, 119(1395): 840
doi: 10.2109/jcersj2.119.840
23 Chen C L, Lv S H, Wang Z C, et al. Oxygen segregation at coherent grain boundaries of cubic boron nitride [J]. Appl. Phys. Lett., 2013, 102(9): 091607
24 Wang Z C, Saito M, McKenna K P, et al. Atom-resolved imaging of ordered defect superstructures at individual grain boundaries [J]. Nature, 2011, 479(7373): 380
doi: 10.1038/nature10593
25 Turlo V, Rupert T J. Dislocation-assisted linear complexion formation driven by segregation [J]. Scr. Mater., 2018, 154: 25
doi: 10.1016/j.scriptamat.2018.05.014
26 Sigle W, Richter G, Rühle M, et al. Insight into the atomic-scale mechanism of liquid metal embrittlement [J]. Appl. Phys. Lett., 2006, 89(12): 121911
doi: 10.1063/1.2356322
27 Shi X M, Luo J. Grain boundary wetting and prewetting in Ni-doped Mo [J]. Appl. Phys. Lett., 2009, 94(25): 251908
doi: 10.1063/1.3155443
28 Cantwell P R, Frolov T, Rupert T J, et al. Grain boundary complexion transitions [J]. Annu. Rev. Mater. Res., 2020, 50: 465
doi: 10.1146/matsci.2020.50.issue-1
29 Luo J, Shi X M. Grain boundary disordering in binary alloys [J]. Appl. Phys. Lett., 2008, 92(10): 101901
doi: 10.1063/1.2892631
30 Luo J. Current opinion in solid state [J]. Mater. Sci., 2008, 12: 81
31 Kuzmina M, Herbig M, Ponge D, et al. Linear complexions: Confined chemical and structural states at dislocations [J]. Science, 2015, 349(6252): 1080
doi: 10.1126/science.aab2633 pmid: 26339026
32 Lei T J, Shin J, Gianola D S, et al. Bulk nanocrystalline Al alloys with hierarchical reinforcement structures Via grain boundary segregation and complexion formation [J]. Acta Mater., 2021, 221: 117394
doi: 10.1016/j.actamat.2021.117394
33 Turlo V, Rupert T J. Interdependent linear complexion structure and dislocation mechanics in Fe-Ni [J]. Crystals, 2020, 10(12): 1128
doi: 10.3390/cryst10121128
34 Turlo V, Rupert T J. Grain boundary complexions and the strength of nanocrystalline metals: Dislocation emission and propagation [J]. Acta Mater., 2018, 151: 100
doi: 10.1016/j.actamat.2018.03.055
35 Khalajhedayati A, Pan Z L, Rupert T J. Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility [J]. Nat. Commun., 2016, 7(1): 10802
doi: 10.1038/ncomms10802
36 Chen B, Zhu L L, Xin Y C, et al. Grain rotation in plastic deformation [J]. Quantum Beam Sci., 2019, 3(3): 17
doi: 10.3390/qubs3030017
37 Naik S N, Walley S M. The hall–petch and inverse hall-petch relations and the hardness of nanocrystalline metals [J]. J. Mater. Sci., 2020, 55(7): 2661
doi: 10.1007/s10853-019-04160-w
38 Tang F, Gianola D S, Moody M P, et al. Observations of grain boundary impurities in nanocrystalline Al and their influence on microstructural stability and mechanical behaviour [J]. Acta Mater., 2012, 60(3): 1038
doi: 10.1016/j.actamat.2011.10.061
39 Hu J, Shi Y N, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J]. Science, 2017, 355(6331): 1292
doi: 10.1126/science.aal5166 pmid: 28336664
40 Yang W F, Gong M Y, Yao J H, et al. Hardening induced by dislocation core spreading at disordered interface in Cu/Nb multilayers [J]. Scr. Mater., 2021, 200: 113917
doi: 10.1016/j.scriptamat.2021.113917
41 Feng L, Hao R, Lambros J, et al. The influence of dopants and complexion transitions on grain boundary fracture in alumina [J]. Acta Mater., 2018, 142: 121
doi: 10.1016/j.actamat.2017.09.002
42 Farkas D, Van Petegem S, Derlet P M, et al. Dislocation activity and nano-void formation near crack tips in nanocrystalline Ni [J]. Acta Mater., 2005, 53(11): 3115
doi: 10.1016/j.actamat.2005.02.012
43 Schuler J D, Barr C M, Heckman N M, et al. In situ high-cycle fatigue reveals importance of grain boundary structure in nanocrystalline Cu-Zr [J]. JOM, 2019, 71(4): 1221
doi: 10.1007/s11837-019-03361-7
44 Pan Z L, Rupert T J. Amorphous intergranular films as toughening structural features [J]. Acta Mater., 2015, 89: 205
doi: 10.1016/j.actamat.2015.02.012
45 Balbus G H, Wang F L, Gianola D S. Suppression of shear localization in nanocrystalline Al-Ni-Ce Via segregation engineering [J]. Acta Mater., 2020, 188: 63
doi: 10.1016/j.actamat.2020.01.041
46 Wang Y M, Li J, Hamza A V, et al. Ductile crystalline-amorphous nanolaminates [J]. Proc. Natl. Acad. Sci. USA, 2007, 104(27): 11155
pmid: 17592136
47 Zheng S J, Ma X L, Yamamoto T, et al. Atomistic study of abnormal grain growth structure in BaTiO3 by transmission electron microscopy and scanning transmission electron microscopy [J]. Acta Mater., 2013, 61(7): 2298
doi: 10.1016/j.actamat.2012.12.046
48 Weissmüller J. Alloy effects in nanostructures [J]. Nanostruct. Mater., 1993, 3(1-6): 261
doi: 10.1016/0965-9773(93)90088-S
49 Khalajhedayati A, Rupert T J. High-temperature stability and grain boundary complexion formation in a nanocrystalline Cu-Zr alloy [J]. JOM, 2015, 67(12): 2788
doi: 10.1007/s11837-015-1644-9
50 Ahadi A, Kalidindi A R, Sakurai J, et al. The role of W on the thermal stability of nanocrystalline nitiwx thin films [J]. Acta Mater., 2018, 142: 181
doi: 10.1016/j.actamat.2017.09.056
51 Ding J, Shang Z, Zhang Y F, et al. Tailoring the thermal stability of nanocrystalline Ni alloy by thick grain boundaries [J]. Scr. Mater., 2020, 182: 21
doi: 10.1016/j.scriptamat.2020.02.032
52 Pan Z L, Rupert T J. Effect of grain boundary character on segregation-induced structural transitions [J]. Phys. Rev., 2016, 93B(13) : 134113
53 Grigorian C M, Rupert T J. Thick amorphous complexion formation and extreme thermal stability in ternary nanocrystalline Cu-Zr-Hf alloys [J]. Acta Mater., 2019, 179: 172
doi: 10.1016/j.actamat.2019.08.031
54 Schuler J D, Donaldson O K, Rupert T J. Amorphous complexions enable a new region of high temperature stability in nanocrystalline Ni-W [J]. Scr. Mater., 2018, 154: 49
doi: 10.1016/j.scriptamat.2018.05.023
55 Balbus G H, Kappacher J, Sprouster D J, et al. Disordered interfaces enable high temperature thermal stability and strength in a nanocrystalline aluminum alloy [J]. Acta Mater., 2021, 215: 116973
doi: 10.1016/j.actamat.2021.116973
62 Lejček P, translated by Zheng L, Wang M Q. Grain Boundary Segregation in Metals [M]. Beijing: Tsinghua University Press, 2020: 41
Lejček P著, 郑 磊, 王民庆 译. 金属中的晶界偏聚 [M]. 北京: 清华大学出版社, 2020: 41
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[3] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[4] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[6] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[7] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[8] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
[9] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[10] ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. 材料研究学报, 2023, 37(3): 184-192.
[11] LIU Dongyang, TONG Guangzhe, GAO Wenli, WANG Weikai. Anisotropy of 2060 Al-Li Alloy Thick Plate[J]. 材料研究学报, 2023, 37(3): 235-240.
[12] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] YU Cong, CHEN Leping, JIANG Hongxiang, ZHOU Quan, YANG Chenggang. Effect of Deep Cryogenic-Aging Treatment on Microstructure and Mechanical Properties of 7075 Al-alloy[J]. 材料研究学报, 2023, 37(2): 120-128.
[14] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[15] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
No Suggested Reading articles found!