Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (8): 581-589    DOI: 10.11901/1005.3093.2022.293
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering
LIU Ruifeng1(), XIAN Yunchang2, ZHAO Rui2, ZHOU Yinmei2, WANG Wenxian3
1.Taiyuan University of Technology, College of Aeronautics and Astronautics, Taiyuan 030024, China
2.Shanxi Yangmei Chemical Machinery (Group) Co. Ltd., Shanxi Key Laboratory of Coal Chemical Pressure Vessels, Taiyuan 030032, China
3.Taiyuan University of Technology, College of Materials Science and Engineering, Taiyuan 030024, China
Cite this article: 

LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering. Chinese Journal of Materials Research, 2023, 37(8): 581-589.

Download:  HTML  PDF(11299KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composite plates of titanium alloy/stainless steel were prepared by spark plasma sintering (SPS), and their microstructure, micro-nano mechanical behavior and tensile properties were investigated. Results show that the temperature of the interface of titanium alloy/stainless steel rises fast owing to the short time spark discharge under the action of high energy pulse current. The interface is relatively flat, while inter-diffusion of Ti, Fe and Cr atoms occurs obviously. A small number of intermetallic compounds TiFe, TiFe2 and FeCr formed at the interface. The hardness of the zone with brittle intermetallic compounds reached 3.5578 GPa, which is much higher than that of metal matrix on both sides (Ti-2.943 GPa, Steel-2.717 GPa). The tensile strength of the titanium alloy/stainless steel composite is 387.5 MPa, which is 72% and 79% of the base material of titanium alloy and stainless steel respectively. During the tensile process, cleavage fracture first occurs on the stainless-steel side, while the titanium alloy side continues to bear the load until the typical ductile fracture occurs.

Key words:  composite      spark plasma sintering      tip spark      bonding interface      fracture mechanism     
Received:  25 May 2022     
ZTFLH:  TG146.2+1  
Fund: National Key Research and Development Program of China(2017YFB0602605);Major Science and Technology Projects in Shanxi Province(Nos. MC2016-01);Major Science and Technology Projects in Shanxi Province(Nos. MC2016-02);National Natural Science Foundation of China(52075360);Fundamental Research Program of Shanxi Province(20210302124653)
Corresponding Authors:  LIU Reifeng, Tel: 15735161357, E-mail: liuruifeng@tyut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.293     OR     https://www.cjmr.org/EN/Y2023/V37/I8/581

Chemical compositionCrTiCFe
Content21.00.30.01Bal.
Table 1  Chemical composition of 443 ferritic stainless steel (mass fraction, %)
ElementAlMnFeCTi
Content1.0~2.50.7~2.0≤0.30≤0.10Bal.
Table 2  Chemical composition of TC1 titanium alloys (mass fraction, %)
Fig.1  Connection schematic diagram (a) and process diagram (b) of SPS process
Fig.2  Current density distribution diagram
Fig.3  Temperature distribution diagram
Fig.4  Residual stress distribution diagram
Density / kg·m-3

Thermal conductivity

/ W·(m·K)-1

Specific heat capacity / J·(kg·K)-1Coefficient of linear expansion / KPoisson's ratio
7678174801.1×10-50.28
Table 3  Thermophysical parameters of 443 ferritic stainless steel
Density / kg·m-3

Thermal conductivity

/ W∙(m∙K)-1

Specific heat capacity

/ J∙(kg∙K) -1

Coefficient of linear expansion / KPoisson's ratio
4550215408.7×10-60.32
Table 4  Thermophysical parameters of TC1 titanium alloy
Fig.5  SEM micrograph of the interface of titanium alloy and stainless steel jointed by spark plasma sintering (a, b) SEM micrograph; (b~f) map scanning
Fig.6  EDS scanning results of the interface of titanium alloy and stainless steel (a) selected points of EDS point scanning; (b) EDS line scanning route; (c) results of EDS line scanning
TiCrFe
Point A89.501.269.24
Point B85.611.7714.73
Point C4.4215.3880.20
Point D1.8416.2481.92
Point E56.844.8438.32
Point F61.535.8632.62
Table 5  EDS point in Fig.6a scanning results (atomic fraction, %)
Test 1Test 2Test 3Average
Point B2.9422.8932.9942.943
Point E3.1523.2013.1753.176
Point F3.5013.6113.5593.557
Point C2.6902.7232.7382.717
Table 6  Nanoindentation test results (GPa)
Fig.7  EBSD diagram of bonding interface of titanium alloy and stainless steel produced by SPS (a) inverse pole figure; (b) recrystallization distribution
Fig.8  XRD test results of the interface of titanium alloy and stainless steel (a) and Fe-Ti phase diagram (b)
Fig.9  Nanoindentation test results of the interface of titanium alloy and stainless steel
Fig.10  Tensile curve of titanium alloy/stainless steel heterogeneous plates
Fig.11  Tensile fracture morphology of titanium alloy/stainless steel heterogeneous plates (a, b) macroscopic morphology; (c, d) titanium alloy side; (e, f) stainless steel side
1 Song T F, Jiang X S, Mo D F, et al. A survey on dissimilar welding of stainless steel and titanium alloy [J]. Mater. Rev., 2015, 29(11): 81
宋庭丰, 蒋小松, 莫德锋 等. 不锈钢和钛合金异种金属焊接研究进展 [J]. 材料导报, 2015, 29(11): 81
2 Ananthakumar K, Kumaran S. Plasma assisted diffusion joining of CP-titanium-304L stainless steel: Attributes of temperature and time [J]. Mater. Today: Proc., 2020, 33: 3174
3 Wang Z J, Song H, Cai S P, et al. Research advancements on self-healing of cracks and evolution of microstructures of titanium alloy sheets induced by electropulsing [J]. J. Plasticity Eng., 2019, 26(2): 1
王忠金, 宋 辉, 蔡舒鹏 等. 脉冲电流诱导钛合金板材裂纹愈合与组织演变研究进展 [J]. 塑性工程学报, 2019, 26(2): 1
4 Luo Z A, Xie G M, Wang G L, et al. Effect of interfacial microstructure on mechanical properties of vacuum rolling clad pure titanium/high strength low alloy steel [J]. Chin. J. Mater. Res., 2013, 27(6): 569
骆宗安, 谢广明, 王光磊 等. 界面微观组织对真空轧制复合纯钛/低合金高强钢界面力学性能的影响 [J]. 材料研究学报, 2013, 27(6): 569
5 Feng J C. Research progress on dissimilar materials joining [J]. Acta Aeronaut. Astronaut. Sin., 2022, 43(2): 626413
冯吉才. 异种材料连接研究进展 [J]. 航空学报, 2022, 43(2): 626413
doi: 10.7527/S1000-6893.2021.26413
6 Yu C, Xiao H, Yu H, et al. Mechanical properties and interfacial structure of hot-roll bonding TA2/Q235B plate using DT4 interlayer [J]. Mater. Sci. Eng., 2017, 695A: 120-125.
7 Yan W D, Sun X F, Zhang Y, et al. Research status and prospect of welding technology for Ti/steel laminated composite plate [J]. Nonferrous Met. Eng., 2021, 11(4): 33
闫婉迪, 孙新丰, 张 岩 等. 钛/钢层状复合板焊接技术的现状与展望 [J]. 有色金属工程, 2021, 11(4): 33
8 Luo Z A, Yang D H, Xie G M, et al. Production process and performance of titanium-steel vacuum roll-cladding plates [J]. J. Iron Steel Res., 2019, 31(2): 213
骆宗安, 杨德翰, 谢广明 等. 真空制坯热轧钛/钢复合板工艺及性能 [J]. 钢铁研究学报, 2019, 31(2): 213
9 Chen C. Investigation on dissimilar materials bonding process of TC4 titanium alloy and 316L stainless steel with selective laser melting [D]. Beijing: Beijing Institute of Technology, 2017
陈 成. TC4钛合金与316L不锈钢异质材料选区激光熔化连接研究 [D]. 北京: 北京理工大学, 2017
10 Zhou R L, Guo D L, Zhang Y Y. Effects of technological parameters of phase transformation diffusion bonding on joint strength of Ti/stainless steel [J]. Chin. J. Nonferrous Met., 2002, 12(4): 663
周荣林, 郭德伦, 张银根. 相变扩散连接工艺参数对钛与不锈钢接头强度的影响 [J]. 中国有色金属学报, 2002, 12(4): 663
11 Gao W W. Study on microstructure and properties of TA2/S316 diffusion welding joints [D]. Ji'nan: Shandong University, 2020
高旺旺. TA2/S316扩散焊接头组织与性能研究 [D]. 济南: 山东大学, 2020
12 Miriyev A, Stern A, Tuval E, et al. Titanium to steel joining by spark plasma sintering (SPS) technology [J]. J. Mater. Process. Technol., 2013, 213: 161
doi: 10.1016/j.jmatprotec.2012.09.017
13 Umeda J, Imai H, Takahashi M, et al. Bonding mechanism of Ti/AZ80 dissimilar materials fabricated by spark plasma sintering [J]. J. Multidiscip. Eng. Sci. Stud., 2016, 2(10): 1009
14 Zhao K, Liu Y, Huang L, et al. Diffusion bonding of Ti-45Al-7Nb-0.3W alloy by spark plasma sintering [J]. J. Mater. Process. Technol., 2016, 230: 272
doi: 10.1016/j.jmatprotec.2015.11.030
15 Dong P, Wang Z, Wang W X, et al. Understanding the spark plasma sintering from the view of materials joining [J]. Scr. Mater., 2016, 123: 118
doi: 10.1016/j.scriptamat.2016.06.014
16 Saleemi M, Toprak M S, Fiameni S, et al. Spark plasma sintering and thermoelectric evaluation of nanocrystalline magnesium silicide (Mg2Si) [J]. J. Mater. Sci., 2013, 48: 1940
doi: 10.1007/s10853-012-6959-0
17 Liu R F, Wang W X, Chen H S, et al. Densification of pure magnesium by spark plasma sintering-discussion of sintering mechanism [J]. Adv. Powder Technol., 2019, 30: 2649
doi: 10.1016/j.apt.2019.08.012
18 Chen Y F, Zhang Z L, Qiu R F. Microstructure and property of diffusion welded titanium alloy/stainless steel joint with Nb and Cu as composite interlayer [J]. Mater. Mech. Eng., 2018, 42(10): 77
doi: 10.11973/jxgccl201810015
陈一帆, 张占领, 邱然锋. 以铌+铜为复合中间层扩散焊接钛合金/不锈钢接头的组织与性能 [J]. 机械工程材料, 2018, 42(10): 77
doi: 10.11973/jxgccl201810015
19 Kurt B, Orhan N, Evin E, et al. Diffusion bonding between Ti-6Al-4V alloy and ferritic stainless steel [J]. Mater. Lett., 2007, 61(8-9): 1747
doi: 10.1016/j.matlet.2006.07.123
20 Miriyev A, Stern A, Tuval E, et al. Titanium to steel joining by spark plasma sintering (SPS) technology [J]. J. Mater. Process. Technol., 2013, 213: 161
doi: 10.1016/j.jmatprotec.2012.09.017
21 Norouzi E, Shamanian M, Atapour M, et al. Diffusion brazing of Ti-6Al-4V and AISI 304: an EBSD study and mechanical properties [J]. J. Mater. Sci., 2017, 52: 12467
doi: 10.1007/s10853-017-1376-z
22 Ananthakumar K, Kumaran S. Plasma assisted diffusion joining of CP-titanium-304L stainless steel: Attributes of temperature and time [J]. Mater. Today: Proc., 2020, 33: 3174
23 Liu R F. Study on the pulse current preparation mechanism and processing properties of B4C/6061Al composites [D]. Taiyuan: Taiyuan University of Technology, 2020
刘瑞峰. B4C/6061Al复合材料脉冲电流制备机理及其加工性能研究 [D]. 太原: 太原理工大学, 2020
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[3] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[4] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[5] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[6] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[7] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] WANG Xingping, XUE Wenbin, WANG Wenxuan. High Temperature Steam Oxidation Behavior of Zr-2 Alloy with ZrO2/Cr Composite Coating[J]. 材料研究学报, 2023, 37(10): 759-769.
No Suggested Reading articles found!