Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (5): 359-368    DOI: 10.11901/1005.3093.2016.488
Orginal Article Current Issue | Archive | Adv Search |
Effect of Cyclic Condensation and Sulfur Dioxide on Corrosion Behavior of 7A04 Aluminum Alloy
Herong ZHOU(), Wang YAO, Pengyang LIU, Jiayong DAN
School of Material and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Cite this article: 

Herong ZHOU, Wang YAO, Pengyang LIU, Jiayong DAN. Effect of Cyclic Condensation and Sulfur Dioxide on Corrosion Behavior of 7A04 Aluminum Alloy. Chinese Journal of Materials Research, 2017, 31(5): 359-368.

Download:  HTML  PDF(7983KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of Al-alloy 7A04 under the condition of alternating condensation cycle with sulfur dioxide for 8 h and dry cycle for 16 h has been investigated by SEM, electrochemical impedance spectroscopy (EIS) and scanning kelvin probe (SKP). The results show that the corrosion of 7A04 alloy in the sulfur dioxide containing environmental condition of condensation cycle seems to be is an atmospheric the corrosion under thin liquid layer, like atmosphere corrosion. The corrosion products increase with time. Mass loss value gradually adds. The results of surface observation show that corrosion product is in the shape or in clusters. Corrosion product is made up of alumina and aluminum sulfate hydrate. The corrosion morphology shows mainly pitting corrosion and slight erosion. EIS simulation results exhibit that the corrosion rate of 7A04 alloy decreases sharply at the initial stage and gradually levels off at the later stage. Surface potential distribution maps reveal that the corrosion potential increase with corrosion time and become stable after 240 h, and the local active dissolution is related to the zonal distribution of the intermetallic compounds.

Key words:  materials failure and protection      cyclic condensation      sulfur dioxide corrosion      7A04 aluminum alloy      electrochemical impedance spectroscopy      scanning kelvin probe     
Received:  13 August 2016     
Fund: Supported by National Natural Science Foundation of China (No.50971048), National Science and technology foundation platform

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.488     OR     https://www.cjmr.org/EN/Y2017/V31/I5/359

Si Fe Cu Mn Mg Zn Ti Al
0.063 0.41 1.56 0.24 2.72 5.81 0.015 89.182
Table 1  Chemical composition of 7A04 alloy (%, mass fraction)
Fig.1  Microstructure of 7A04 alloy (a) SEM image; (b) amplification of (a) image
Dot Si Fe Cu Mn Mg Zn O Cr Al
a 0.0 0.0 1.49 0.0 4.45 5.41 0.0 0.0 88.95
a1 4.53 19.87 3.05 4.92 0.0 1.22 0.0 1.93 64.49
a2 0.0 0.0 28.35 0.0 12.37 3.14 0.0 0.0 56.14
a3 22.64 0.0 0.0 0.0 11.46 2.90 12.79 0.0 49.21
Table 2  EDX analysis of intermetallic particles of 7A04 alloy (%, mass fraction)
Fig.2  Relationship between corrosion weight loss and time of 7A04 aluminum alloy
Fig.3  Surface corrosion morphology changes of 7A04 alloy (a) 24 h; (b) 48 h;(c) 96 h; (d) 240 h; (e) 360 h; (f) 480 h
Fig.4  SEM image changes of 7A04 alloy (a) 24 h; (b) 96 h;(c) 240 h; (d) 480 h
Fig.5  Image of 7A04 alloy after eliminating corrosion products (a) 24 h; (b) 96 h; (c) 240 h; (d) 480 h
Fig.6  AC impedance spectra of the 7A04 alloy (a) Nyquist; (b) bode
Fig.7  Equivalent circuits of 7A04 alloy, which Rs is the solution resistance, L the inductance, CPE the double layer capacitance and Rct the charge transfer resistance
Fig.8  Double layer parameters of 7A04 alloy in the solution (a) capacitance; (b) corrosion rate
Time 2 h 6 h 24 h 72 h 144 h 240 h 360 h
Rs /Ωcm2 56.8 47.44 53.96 124.7 153.1 142.7 78.74
CF-1cm-2S-n1 1.273×10-5 2.972×10-5 6.484×10-5 1.829×10-4 9.547×10-5 1.882×10-4 1.835×10-4
n1 0.96 0.89 0.94 0.922 0.90 0.7977 0.812
Rct /Ωcm2 3826 6349 6900 5030 5438 7841 9684
L /Ωcm2 6.135×10-5
Table 3  The change of EIS parameters of 7A04 alloy in the solution
Fig.9  SKP images of 7A04 alloy in solution (a) 0 h; (b) 24 h; (c) 96 h; (d) 168 h; (e) 240 h; (f) 360 h
Fig.10  Temperature and humidity changes during the process of cyclic condensation test
[1] Li X G, Zhang D W, Liu Z Y, et al.Share corrosion data[J].Nature, 2015, 527: 441
[2] Dong C.F, Sheng H, An Y H, et al. Corrosion of 7A04 aluminum alloy under defected epoxy coating studied by localized electrochemical impedance spectroscopy[J]. Prog. Org. Coat., 2010, 67: 269
[3] Zhou H R, Ma J, Li X G, et al.Corrosion behaviour of 7A04 aluminium alloy deposited with sodium chloride in simulated environment[J]. Chin. J. Nonferrous. Met., 2009, 19(5): 974(周和荣, 马坚, 李晓刚等. 表面沉积氯化钠的7A04铝合金在模拟环境中的腐蚀行为[J]. 中国有色金属学报, 2009, 19(5): 974)
[4] Oesch S, faller M. Environmental effects on materials: the effect of the air pollutants SO2, NO2 and O3 on the corrosion of copper, zinc and aluminum. A short literature survey and results of laboratory exposures[J]. Corros. Sci., 1997, 39(9):1505
[5] Husnu G, Gozen B, Mine K.A morphological and electrochemical comparison of the corrosion process of aluminum alloys under simulated acid rain conditions[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 58: 509
[6] Han W,Wang Z Y,Yu G C, et al.Corrosion of aluminum in wet/dry environment containing SO2[J]. Chin. J. Nonferrous. Met., 2003, 13(3): 631(韩薇, 王振尧, 于国才等. 铝在含SO2湿润/干燥环境中的腐蚀规律[J]. 中国有色金属学报, 2003, 13(3): 631)
[7] Svensson J E, Johansson G.A laboratory study of the initial stages of the atmospheric corrosion of zinc in the presence of NaCl, influence of SO2 and NO2[J]. Corros. Sci., 1993, 34(5): 721
[8] Zhou H R, Li X G, Dong C F, et al.The corrosion behaviors of aluminum alloys in simulated SO2 pollute atmosphere[J]. J. Aeronaut. Mater., 2008, 28(2): 39(周和荣, 李晓刚, 董超芳等. 铝合金在模拟SO2污染大气环境中的腐蚀行为研究[J]. 航空材料学报, 2008, 28(2): 39)
[9] Zhou H R, Ma J, Li X G, et al.Corrosion behaviors and relativity high strength alloy in different simulated SO2 environment. J. Chin. Soc. Corros. Prot., 2011, 31(6): 1(周和荣, 马坚, 李晓刚等. 高强铝合金在不同SO2模拟环境中的腐蚀行为及相关性研究[J]. 中国腐蚀与防护学报, 2011, 31(6): 1)
[10] Graedel T E.Corrosion mechanisms for aluminum exposed to the heat atmosphere[J]. J. Electrochem. Soc., 1989, 136(4): 204c
[11] Zhou H R, Li X G, Ma J, et al.Dependence of the corrosion behavior of aluminum alloy 7075 on the thin electrolyte layers[J]. Mater. Sci. Eng. B, 2009, 162(1): 1
[12] Dias S A S, Lamaka S V, Nogueira C A, et al. Sol-gel coatings modified with zeolite fillers for active corrosion protection of AA2024[J]. Corros.Sci., 2012, 62:153
[13] Aline C, Denys M, Leandro B, et al.Influence of Al7Cu2Fe intermetallic particles on the localized corrosion of high strength aluminum alloys[J]. Mater. Des., 2014, 53: 118
[14] Yadav A P, Katayama H, Noda K, et al.Effect of Al on the galvanic ability of Zn-Al coating under thin layer of electrolyte[J]. Electrochim. Acta, 2007, 52: 2411
[15] Davoodi A, Pana J, Leygraf C.Probing of local dissolution of Al alloys in chloride solutions by AFM and SECM[J]. Appl. Surf. Sci., 2006, 252: 5499
[16] Dan Z H, Takigawa S, Muto I, et al.Applicability of constant dew point corrosion tests for evaluating atmospheric corrosion of aluminum alloys[J]. Corros.Sci., 2011, 53: 2006
[17] Wang Z Y, Ma T, Han W.Corrosion behavior of aluminum alloy LC4 in simulated pollute atmosphere[J]. J. Chin. Soc. Corros. Prot., 2005, 25(6): 321(王振尧, 马腾, 韩薇. LC4铝合金在模拟污染大气环境中的腐蚀行为[J].中国腐蚀与防护学报, 2005, 25(6): 321)
[18] Sun S Q, Zheng Q F, Li D F, et al.Long-term atmospheric corrosion behaviour of aluminium alloys 2024and 7075 in urban, coastal and industrial environments[J]. Corros. Sci., 2009, 51: 719
[19] Nikolaos D A, Charis J D, Panagiotis S, et al.Accelerated corrosion exposure in ultra thin sheets of 2024 aircraft aluminium alloy for GLARE applications[J]. Corros. Sci., 2012, 55: 289
[20] Eimahdy G A, Nishikata A, Tsuru T.AC impedance study on corrosion of 55%Al-Zn alloy coated steel under thin electrolyte layers[J]. Corros. Sci., 2000, 42: 1509
[21] Eimutis J, Aloyzas S, Klaus J.Study of initial stages of Al-Mg alloy corrosion in water, chloride and Cu(II) environment by a scanning Kelvin probe and XPS[J]. Electrochem. Commun., 2003, 5: 154
[22] Eimutis J, Konstantinas L, Wolfram F.Study of initial stages of Al-Mg alloy corrosion in water, chloride and Cu(II) environment by a scanning Kelvin probe[J]. Corros. Sci., 2003, 45: 1939
[1] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[4] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[5] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[6] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[7] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[8] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[9] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[10] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[11] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[12] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[13] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[14] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
[15] Xu ZHANG,Shanping LU. Corrosion Behavior of Ni-based Weld Metals with Different Mo Content in a Nitric Acid Aqueous Solution[J]. 材料研究学报, 2019, 33(6): 401-408.
No Suggested Reading articles found!