Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (5): 369-373    DOI: 10.11901/1005.3093.2016.631
Orginal Article Current Issue | Archive | Adv Search |
Structural Characterization of Natural Rubber Molecular Side Chain
Linhe JIN, Jingyi CAI, Huifeng ZHANG, Shuangquan LIAO()
College of Material and Chemical Engineering, Hainan University, Key Laboratory Advanced Materials of Tropical Island Resources, Ministry of Education, Haikou 570228, China
Cite this article: 

Linhe JIN, Jingyi CAI, Huifeng ZHANG, Shuangquan LIAO. Structural Characterization of Natural Rubber Molecular Side Chain. Chinese Journal of Materials Research, 2017, 31(5): 369-373.

Download:  HTML  PDF(1869KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The branch Side-chains of the natural rubber molecular chain are investigated in this thesis. The instruments such as by means of Gel Permeation Chromatograph (GPC), Kjeldahl Auto Analyzer, Fourier Transform Infrared Spectrometer(FTIR) and Nuclear Magnetic Resonance(NMR) Spectrometer etc. in terms of the epoxide group, hydroxyl, aldehyde group, and carboxyl group, as well as the 3,4-polymeric structures of the chain are used to detect the variety and content of branch. The experimental results show that the contents of epoxide group is 0.63%, hydroxyl is 0.04%, aldehyde groups is 0.11%, carboxyl groups is 0.01%. Based on these results, a model of molecular chain has been built is established for the natural rubbe.

Key words:  orgamic polymer materials      natural rubber      molecular chain      branch structure      analysis     
Received:  01 November 2016     
Fund: Supported by National Natural Science Foundation of China (No.51363006);Special Fund for Agro-scientific Research in the Public Interest (No.20140366);Science and Technology Program of Hainan (No.ZDKJ2016020-02)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.631     OR     https://www.cjmr.org/EN/Y2017/V31/I5/369

Fig.1  1H-NMR of DPNR
Fig.2  Carbon atoms serial numbers of isoprene
Sample Nitrogen
content/%
Mw Nitrogen atoms per molecular chain
NR 0.75 934370 500.56
DPNR 0.02 829869 11.86
SPNR 0.018 813907 10.46
SPNR-a 0.056 794309 31.77
Table 1  Nitrogen content, molecular weight and nitrogen atoms per molecular chain of NR/DPNR/SPNR/SPNR-a
Fig.3  FTIR spectrogram of NR/DPNR/SPNR/SPNR-a
Fig.4  FTIR spectrogram of NR/DPNR/SPNR/SPNR-a
Fig.5  1H-NMR of DPNR
Fig.6  Structure model of natural rubber molecular chain
[1] R. M. Nasir, N. S. M.El-Tayeb. Surface morphology, mechanical and tribological properties of blended deproteinized natural and polyisoprene rubbers[J]. Journal of Thermoplastic Composite Materials, 2012, 25: 701
[2] P. Wongthong, C. Nakason, Q. M. Pan.Styrene-assisted grafting of maleic anhydride onto deproteinized natural rubber[J]. European Polymer Journal, 2014, 59: 144
[3] M. Bruzzone, A. Carbonaro, L. Gargani.Crystallizable trans-butadiene-piperylene elastomers[J]. Rubber Chemistry and Technology, 1978, 51: 907
[4] De Valle LFR, M. Monterongo. Cohesive strength in guayule rubber and its improvement through chemical promotion[J]. Rubber Chemistry and Technology, 1978, 51: 863
[5] B. L. Archer, E. G. Cockbain.The proteins of Hevea brasiliensis latex. 2. Isolation of the a-globulin of fresh latex serum[J]. Biochemical Journal, 1955, 61: 508
[6] Y. Tanaka, H. Sato, A. Kageyu.Structure and biosynthesis mechanism of natural cis-polyisoprene from goldenrod, Rubber Chemistry & Technology, 1983, 56(2): 299
[7] D. Mekkriengkrai, J. T. Sakdapipanich, Y. Tanaka.Structural characterization of terminal groups in natural rubber: origin of nitrogenous groups[J]. Rubber Chemistry and Technology, 2006, 79: 366
[8] Y. Tanaka, E. Aikhwee, N. Ohya.Initiation of rubber biosynthesis in Hevea brasiliensis 1. initiation of rubber biosynthesis in Hevea brasiliensis-characterization of initiating species by structural analysis[J]. Phytochemistry, 1996, 41: 1501
[9] F. W. Perrella, A. A. Gaspari.Natural rubber latex protein reduction with an emphasis on enzyme treatment[J]. Methods, 2002, 27: 77
[10] Y. Tanaka.Structure and biosynthesis mechanism of natural polyisoprene[J]. Progress in Polymer Science, 1989, 14, 339
[11] Lu Chi, Li Peisen, Li Zhiping.Determination of degree of epoxidation of natural rubber by fourier transform infrared spectroscopy[J]. China Rubber Industry, 1992, 39, 615(卢炽, 黎沛森, 黎志平. 应用傅里叶红外光谱法测定环氧化天然橡胶的环氧化程度[J]. 橡胶工业, 1992, 39(10): 615)
[12] He Canzhong, Peng Zheng, Zhong Jieping.Study on Distribution of Epoxy Groups in Epoxidized Natural Rubber[J]. Chinese Polymer Bulletin, 2011, 11: 74(何灿忠, 彭政, 钟杰平. 环氧化天然橡胶中环氧基团分布情况的研究[J]. 高分子通报, 2011, 11: 74)
[13] Tan Jinmei, Li Chuangqing, Xu Lin.Study on microstructure and crystallization properties of isoprene rubber[J]. Scientia Sinica Chimica, 2014, 44: 1733(谭金枚, 李传清, 徐林. 异戊橡胶微观序列结构与结晶性能研究[J]. 中国科学: 化学, 2014, 44: 1733)
[14] Zhao Huihui, Zhai Yueqin, Zhao Jialin et al. Determination of micro-structure of butadiene rubber by infrared spectroscopy[J]. ChinaElastomerics, 2015, 25: 71(赵慧晖, 翟月勤, 赵家林等. 红外光谱法测定丁二烯橡胶微观结构[J]. 弹性体, 2015, 25: 71)
[1] XUN Yu, YAN Wei, SHI Xianbo, ZHANG Chuanguo, SHAN Yiyin, YANG Ke, REN Yi. Strain Hardening Behavior of Polygonal Ferrite and Acicular Ferrite Dual-phase Pipeline Steel[J]. 材料研究学报, 2022, 36(8): 561-570.
[2] LIU Ming, WU Jianan. Scratch Behavior of Materials under Progressive Load by Conical Indenter[J]. 材料研究学报, 2022, 36(3): 191-205.
[3] MIAO Yuezhen, WANG Xintong, XIE Mengshu, QI Kezhen, CHU Zengze, SUN Qiuju. Thermal Decomposition Dynamics of Nylon 66 and Its Composites[J]. 材料研究学报, 2020, 34(8): 599-604.
[4] SHI Yuanji,YU Linhui,YU Zhaopeng,CHENG Gong,WU Xiaochun,TENG Hongchun. High Temperature Stability and Thermal Fatigue Behavior of DM Hot Working Die Steel[J]. 材料研究学报, 2020, 34(2): 125-136.
[5] Shuang PAN,Xue ZHUANG,Bing WANG,Lidan TANG,Liang LIU,Jingang QI. Preparation and Properties of Carbon Coated Manganese Dioxide Electrode Materials[J]. 材料研究学报, 2019, 33(7): 530-536.
[6] Jin ZHANG, Mengyu CHAI, Jinghai XIANG, Quan DUAN, Lichan LI. Characteristics of Acoustic Emission Signal from Fracture Process of 316LN Stainless Steel[J]. 材料研究学报, 2018, 32(6): 415-422.
[7] Ruipeng GUO, Jing ZHANG, Lei XU, Jiafeng LEI, Yuyin LIU, Rui YANG. Mechanical Properties of Ti-5Al-2.5Sn ELI Powder Compacts[J]. 材料研究学报, 2018, 32(5): 333-340.
[8] Chen LIU, Lijian YANG, Xing ZHANG. Finite Element Analysis for Hemodynamic Behavior of Bioprosthetic Heart Valves[J]. 材料研究学报, 2018, 32(1): 51-57.
[9] Yachao WANG, Jiangping ZHAO, Yuanyuan TONG, Jianxiong DING. Preparation and Flame-retartant Property of LaCl3 Doped Polyacrylamide/Silica Ash-based Flame Retardant Materials[J]. 材料研究学报, 2017, 31(5): 387-393.
[10] Song YE, Ping SUN, Junheng LIU, He HUANG. Effect of Microstructure of CeO2 Particles on Catalyzing Oxidation of Diesel Particulate Matter[J]. 材料研究学报, 2017, 31(12): 955-960.
[11] Fuzhong REN,Sizhan WU,Wei SHI. Interface Characteristics and Damping Performance of Ni-coated Short Carbon Fiber Reinforced AZ91D Magnesium Matrix Composites[J]. 材料研究学报, 2017, 31(1): 74-80.
[12] Min SHEN,Xiaoxiang SUN,Yang LIU. Influence of Interface Property on Effective Modulus and Tensile Behavior of Short Fiber Reinforced Composite[J]. 材料研究学报, 2016, 30(9): 681-689.
[13] LI Jiajun, LIU Hao, ZUO Yonggang, BAI Yang, YUAN Hewei, HE Qiyu, JIANG Long, GUO Hui, SUN Zhenlu, CHEN Guangchao. Analysis of Adhesive Strength between Magnetron Sputtered Copper Films and Substrate[J]. 材料研究学报, 2016, 30(8): 634-640.
[14] TANG Cunjiang, SHANG Chengjia, GUAN Hailong, WANG Xuemin. Strain Hardening Behavior and Stress Ratio of High Deformability Pipeline Steel with Ferrite/Bainite Multi-phase Microstructure[J]. 材料研究学报, 2016, 30(6): 409-417.
[15] GAO Xiang, WEI Ya, HUANG Wei. Phase Identification in Cement Paste by Modulus Mapping[J]. 材料研究学报, 2016, 30(5): 321-328.
No Suggested Reading articles found!