Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (6): 455-462    DOI: 10.11901/1005.3093.2024.259
ARTICLES Current Issue | Archive | Adv Search |
Effect of Er2O3 Addition on Crystallization Behavior and Properties of Lithium Disilicate Glass Ceramics
YUAN Xinyu, SHI Fei, LIU Jingxiao(), ZHANG Haojie, YANG Dayi, WANG Meiyu, REN Ming
School of Textile and Materials Engineering, Key Laboratory of New Materials and Material Modification in Liaoning Province, Dalian Polytechnic University, Dalian 116034, China
Cite this article: 

YUAN Xinyu, SHI Fei, LIU Jingxiao, ZHANG Haojie, YANG Dayi, WANG Meiyu, REN Ming. Effect of Er2O3 Addition on Crystallization Behavior and Properties of Lithium Disilicate Glass Ceramics. Chinese Journal of Materials Research, 2025, 39(6): 455-462.

Download:  HTML  PDF(7963KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Lithium disilicate glass-ceramics of Li2O-K2O-MgO-Al2O3-SiO2-ZrO2-CeO2-P2O5 were prepared by melting-crystallization method. The effect of Er2O3 addition on the crystallization, microstructure and properties of the glass-ceramics was investigated. The results show that Er2O3 has significant regulating effect on the precipitation, microstructure and properties of the glass ceramics. When an appropriate amount of Er2O3 (0.4%, mole fraction) was added to the glass, it could effectively reduce the crystallization activation energy of Li2SiO3 and Li2Si2O5, and promote glass crystallization. The prepared glass-ceramics have interlocked grains, while the glass phase is closely bound to the crystal phase, which helps to prevent crack extension and achieve the best mechanical properties. The average three-point flexural strength reaches (376±61) MPa, with the microhardness reaching (6423±284) MPa, and the glass ceramic exhibits good translucence. Whereas, when an excessive amount of Er2O3 is added to the glass, the increase in the size of the precipitated crystals and the enhancement of the coloring effect of Er3+ will lead to a decrease in the mechanical properties and transparency of lithium disilicate glass ceramics. This work is of great significance for developing lithium disilicate glass ceramics and promoting their application in dental prosthetics.

Key words:  inorganic non-metallic materials      lithium disilicate      Er2O3      glass-ceramic      flexural strength      translucency     
Received:  12 June 2024     
ZTFLH:  R783.1  
Fund: Joint R & D Fund of Liaoning Province Shenyang National Research Centre for Materials Science Project(2019JH3/30100013)
Corresponding Authors:  LIU Jingxiao, Tel: (0411)86323708, E-mail: drliu-shi@dlpu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.259     OR     https://www.cjmr.org/EN/Y2025/V39/I6/455

SampleSiO2Li2OP2O5Al2O3Er2O3Other oxides
Er066.4027.101.21.403.91
Er0.466.0827.011.21.40.43.91
Er0.865.8226.861.21.40.83.91
Er1.265.5526.751.21.41.23.91
Table 1  Glass compositions of lithium disilicate glasses with different Er2O3 content (mole fraction, %)
Fig.1  DTA curves for matrix glasses with different Er2O3 contents
Fig.2  Fitted curves of ln(β/Tp2) versus 1000/Tp variation for the crystallization peaks of Li2SiO3 and Li2Si2O5 of glasses with different Er2O3 contents (a) Li2SiO3; (b) Li2Si2O5
Sample

Er2O3 content

/ %, mole fraction

Tg / oCTp1 / oCEk1 / kJ·mol-1Tp2 / oCEk2 / kJ·mol-1Tm / oC
Er00479.42631.12223.32±11.40839.27338.66±15.28957.26
Er0.40.4477.62638.61136.84±39.06848.31320.61±22.53954.06
Er0.80.8474.89640.56126.88±17.20856.14431.52±52.62942.84
Er1.21.2499.12664.43159.41±8.36857.10361.66±171943.02
Table 2  Characteristic temperatures and corresponding activation energies of each glass sample of different Er2O3 content
Fig.3  XRD patterns of glass-ceramic samples prepared by different heat treatment process from the base glasses with different Er2O3 contents (a) 650 oC for 1 h; (b) 650 oC for 1 h, 860 oC for 20 min; (c) crystal phase content of Li2SiO3 and Li2Si2O5 in the obtained glass ceramic after heat-treatment at 650 oC for 1 h and 860 oC for 20 min successively
Fig.4  SEM and EDS images of glass-ceramic samples prepared from matrix glasses with different Er2O3 contents by holding at 650 oC for 1 h and 860 oC for 20 min (a) Er0; (b) Er0.4; (c) Er0.8; (d) Er1.2; (e) EDS of Er1.2; (f) EDS elemental analysis results
Fig.5  Comparison of three-point flexural strength and microhardness tests of glass-ceramic samples pre-pared from matrix glasses with different Er2O3 contents after two stage crystallization heat treatment
Fig.6  Schematic diagram of the regulation mechanism of the morphology of Li2Si2O5 crystals by adding different Er2O3 amount
Fig.7  Density of the matrix glasses and glass-ceramic samples prepared by two stage crystallization at 650 and 860 oC with different Er2O3 contents, and the density increment after heat treatment
Fig.8  Chemical solubility in acetic acid solutions of the glass-ceramic samples prepared from matrix glasses with different Er2O3 contents by heat treatment at 650 and 860 oC successively
Fig.9  Transmittance and physical photos of glass-ceramic samples prepared by crystallization heat treatment at 650 and 860 oC of matrix glass with different Er2O3 contentss
1 Zarone F, Ferrari M, Mangano F G, et al. “Digitally oriented materials”: focus on lithium disilicate ceramics[J]. Int. J. Dent., 2016, 2016: 9840594
2 Höland W, Schweiger M, Frank M, et al. A comparison of the microstructure and properties of the IPS Empress®2 and the IPS Empress® glass-ceramics[J]. J. Biomed. Mater. Res., 2000, 53(4): 297
3 Ali A A B, Kang K, Finkelman M D, et al. The effect of variations in translucency and background on color differences in CAD/CAM lithium disilicate glass ceramics[J]. Prosthodontics, 2014, 23: 213
4 Chen S G, Li K W, Wang L C, et al. Application of ceramic additive manufacturing technology in dental field[J]. Mech. Electr. Eng. Technol., 2021, 50(8): 11
陈盛贵, 李开武, 王立超 等. 陶瓷增材制造技术在齿科领域的应用现状[J]. 机电工程技术, 2021, 50(8): 11
5 Mavriqi L, Valente F, Murmura G, et al. Lithium disilicate and zirconia reinforced lithium silicate glass-ceramics for CAD/CAM dental restorations: biocompatibility, mechanical and microstructural properties after crystallization[J]. J. Dent., 2022, 119: 104054
6 Chen Y Q, Yao Y, Luo A X. Clinical performance of chairside monolithic lithium disilicate glass-ceramic CAD-CAM crowns[J], Shanghai Dent., 2021, 30(2): 191
陈月靖, 姚 瑶, 罗傲翔. 椅旁CAD-CAM二硅酸锂玻璃陶瓷全冠的修复效果评价[J]. 上海口腔医学, 2021, 30(2): 191
7 Gautam C, Joyner J, Gautam A, et al. Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications[J]. Dalton Transactions, 2016, 45: 19194
8 Zhang H J, Liu J X, Shan Z J, et al. Microstructure regulation and properties of lithium disikieate glass ceramics[J]. J. Dalian Polytech. Univ., 2019, 38(3): 211
张皓杰, 刘敬肖, 单正杰 等. 二硅酸锂微晶玻璃结构调控及性能[J]. 大连工业大学学报, 2019, 38(3): 211
9 Li D, Li X C, Zhang Z Z, et al. Understanding the mechanism for the mechanical property degradation of a lithium disilicate glass-ceramic by annealing[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78: 28
doi: S1751-6161(17)30474-5 pmid: 29132098
10 Zhao T, Lian M M, Qin Y, et al. Improved performances of lithium disilicate glass-ceramics by seed induced crystallization[J]. J. Adv. Ceram., 2021, 10(3): 614
11 Shan Z J, Liu J X, Liu M, et al. Surface strengthening of lithium disilicate glass-ceramic by ion-exchange using Rb, Cs nitrates[J]. Ceram. Int., 2018, 44(11): 12466
12 Höland W, Apel E, van‘t Hoen C, et al. Studies of crystal phase formations in high-strength lithium disilicate glass-ceramics[J]. J. Non-Cryst. Solids, 2006, 352(38-39): 4041
13 Zhao T, Lei Y J, Qin Y, et al. Preparation and properties of lithium aluminosilicate glass-ceramics strengthened by rod-like lithium disilicate crystals[J]. J. Shaanxi Univ. Sci. Technol., 2020, 38(4): 101
赵 婷, 雷钰洁, 秦 毅 等. 棒状二硅酸锂晶体增强铝硅酸锂玻璃陶瓷的制备及性能[J]. 陕西科技大学学报, 2020, 38(4): 101
14 Khalkhali Z, Eftekhari Yekta B, Marghussian V K. Mechanical and chemical properties of Zr and P-doped lithium disilicate glass ceramics in dental restorations[J]. J. Appl. Ceram. Technol., 2012, 9(3): 497
15 Zhang N, Lin Z W, Man S Q. Luminescence properties of Er3+ ions in Er3+-doped Li2O-SrO-ZnO-Bi2O3 glasses with 1.53 μm emission[J]. Chin. J. Inorg. Chem., 2021, 37(6): 984
张 宁, 林志文, 满石清. Er3+掺杂Li2O-SrO-ZnO-Bi2O3玻璃中Er3+离子在1.53 μm处的荧光发射特性[J]. 无机化学报学报, 2021, 37(6): 984
16 Hu Y, Pan W. Judd-Ofelt analysis of the Er, Yb Co-doped Y2O3 transparent ceramics[J]. Rare Met. Mater. Eng., 2018, 47(S1): 366
胡 悦, 潘 伟. Er, Yb共掺氧化钇透明陶瓷的Judd-Ofelt参数计算[J]. 稀有金属材料与工程, 2018, 47(S1): 366
17 Zhang J, Cui X H. Effect of Er2O3 on thermal expansion and mechanical propertyies of lithium zinc disilicate glass-ceramics[J]. J. Wuhan Univ. Technol., 2016, 38(11): 1
张 建, 崔相辉. Er2O3对锂锌硅微晶玻璃热膨胀及力学性能的影响[J]. 武汉理工大学学报, 2016, 38(11): 1
18 Li R Y, Xie M, Zhang Y H, et al. Physical properties of Er2O3 doped Gd2(Zr0.8Ti0.2)2O7 ceramic materials[J]. Chin. J. Mater. Res., 2022, 36(1): 49
李瑞一, 谢 敏, 张永和 等. Er2O3掺杂Gd2(Zr0.8Ti0.2)2O7陶瓷的物理性能[J]. 材料研究学报, 2022, 36(1): 49
doi: 10.11901/1005.3093.2021.230
19 Zeng R F, Jiang X P, Chen C, et al. Effects of Er3+-doping on performance of Bi3Ti1.5W0.5O9-Bi4Ti3O12 intergrowth lead-free piezoceramics[J]. Chin. J. Mater. Res., 2022, 36(10): 760
曾仁芬, 江向平, 陈 超 等. Er3+掺杂对Bi3Ti1.5W0.5O9-Bi4Ti3O12共生无铅压电陶瓷性能的影响[J]. 材料研究学报, 2022, 36(10): 760
doi: 10.11901/1005.3093.2021.302
20 Zhang H J, Liu J X, Shi F, et al. Controlling the microstructure and properties of lithium disilicate glass-ceramics by adjusting the content of MgO[J]. Ceram. Int., 2023, 49: 216
21 Shan Z J, Liu J X, Shi F, et al. A new strengthening theory for improving the fracture strength of lithium disilicate glass-ceramics by introducing Rb or Cs ions[J]. J. Non-Cryst. Solids, 2018, 481: 479
22 Ren S P, Chen X M, Qing S, et al. Microstructure and mechanical properties of the new dental glass ceramics with different formulations[J]. Chin. J. Tissue Eng. Res., 2021, 25(34): 5427
任世鹏, 陈新民, 青 松 等. 不同配方新型牙用玻璃陶瓷的显微结构与力学性能[J]. 中国组织工程研究, 2021, 25(34): 5427
23 Shan Z J, Deng Y N, Liu J X, et al. Effectively promoting the crystallization of lithium disilicate glass-ceramics by free oxygen in the glass[J]. Mater. Chem. Phys., 2020, 240: 122131
24 Jia X. Study on structure and properties of Al2O3-B2O3-SiO2 system glasses doped with rare earth oxides[D]. Jinan: University of Jinan, 2013
贾 絮. 稀土氧化物掺杂Al2O3-B2O3-SiO2系统玻璃结构与性能的研究[D]. 济南: 济南大学, 2013
25 Berthier T, Fokin V M, Zanotto E D. New large grain, highly crystalline, transparent glass-ceramics[J]. J. Non-Cryst. Solids, 2008, 354(15-16): 1721
[1] HAN Leilei, WANG Wentao, WU Yun, CHEN Jiajun, ZHAO Yong. High Temperature Growth Process of YBCO Superconducting Solder by Fluorine-free Chemical Solution Method[J]. 材料研究学报, 2025, 39(6): 474-480.
[2] CHEN Shiyu, LI Wei, KUANG Haiyan, GAO Shaowei, PANG Dongfang. Dielectric-, Ferroelectric- and Piezoelectric-property of Lu3+ Doped 0.67BiFeO3-0.33BaTiO3 Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2025, 39(4): 272-280.
[3] DENG Xiaolong, WANG Shanshan, DAI Xinxin, LIU Yi, HUANG Jinzhao. Preparation and Performance of Electrocatalyst of Amorphous FeOOH Covered Layered Double Hydroxide CoFeAl-Heterostructure for Efficient Overall Water Splitting in Alkaline Solution[J]. 材料研究学报, 2025, 39(1): 71-80.
[4] XU Zhanyuan, ZHAO Wei, SHI Xiangshi, ZHANG Zhenyu, WANG Zhonggang, HAN Yong, FAN Jinglian. Effect of Composition Adjustment on Structure and Magnetic Properties of Soft Magnetic MnZn Ferrites[J]. 材料研究学报, 2025, 39(1): 55-62.
[5] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[6] YUAN Xinzhong, WANG Cunjing, YAO Peng, LI Qiong, MA Zhihua, LI Pengfa. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors[J]. 材料研究学报, 2024, 38(7): 529-536.
[7] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
[8] WANG Jun, WANG Xuanli, LIU Shuang, SONG Rui, SONG Xiwen. Effect of Mn Doping on Microstructure and Thermal Conductivity of (Y0.4Er0.6)3Al5O12 Ceramics Material for Thermal Barrier Coating[J]. 材料研究学报, 2024, 38(6): 463-470.
[9] WANG Wei, CHANG Wenjuan, LV Fanfan, XIE Zelei, YU Chengcheng. Preparation and Tribological Properties of Fluorinated Boron Nitride Nanosheets Water-based Additive[J]. 材料研究学报, 2024, 38(6): 410-422.
[10] GUO Zhinan, ZHAO Qiang, LI Shuying, WANG Junli, XU Lin, SHANG Jianpeng, GUO Yong. Preparation and Degradation Performance of Composite Photocatalyst of Two-Dimensional Layered ZnNiAl-LDH/ Cuprous Oxide Particles[J]. 材料研究学报, 2024, 38(6): 423-429.
[11] WU Qianfang, HE Qun, CHANG Bing, QUAN Yuxin, HU Jingwen, LI Saisai, CAO Yingnan. Preparation and Neutron Shielding Properties of Fiberglass Based Thermal Insulating Porous Ceramics[J]. 材料研究学报, 2024, 38(6): 471-480.
[12] TAN Yiling, LI Shichun, SUN Jie. Preparation of Metal-organic Framework Porous Glass agSALEM-2[J]. 材料研究学报, 2024, 38(5): 373-378.
[13] XU Hui, ZHANG Peiyuan, XU Nana, LIU Tao, ZHANG Xiaoshan, WANG Bing, WANG Yingde. Mechanical Property and Thermal Insulation Performance of SiO2/ZrO2 Nanofiber Membranes with High Thermal Stability[J]. 材料研究学报, 2024, 38(5): 365-372.
[14] WANG Yan, ZHANG Hao, CHANG Na, WANG Haitao. Preparation of Acid-alkali Modified Coal Fly Ash Adsorbent and Its Removal Performance on Dyes[J]. 材料研究学报, 2024, 38(5): 379-389.
[15] LI Jing, XU Yingchao, FAN Haoshuang, LU Yi, LI Li, ZHANG Xianyu. Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor[J]. 材料研究学报, 2024, 38(4): 288-296.
No Suggested Reading articles found!