Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (1): 55-62    DOI: 10.11901/1005.3093.2024.193
ARTICLES Current Issue | Archive | Adv Search |
Effect of Composition Adjustment on Structure and Magnetic Properties of Soft Magnetic MnZn Ferrites
XU Zhanyuan1(), ZHAO Wei2, SHI Xiangshi1, ZHANG Zhenyu1, WANG Zhonggang1, HAN Yong3, FAN Jinglian3
1 School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China
2 Farsoon Technologies Company Limited, Changsha 410006, China
3 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Cite this article: 

XU Zhanyuan, ZHAO Wei, SHI Xiangshi, ZHANG Zhenyu, WANG Zhonggang, HAN Yong, FAN Jinglian. Effect of Composition Adjustment on Structure and Magnetic Properties of Soft Magnetic MnZn Ferrites. Chinese Journal of Materials Research, 2025, 39(1): 55-62.

Download:  HTML  PDF(8057KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Mn1 - x Zn x Fe2O4 (x = 0.1, 0.3, 0.5, 0.7, 0.9) powder materials were prepared by the “chemical sol-spray drying-calcination” method. The prepared powders were characterized by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray photon-electron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscopy (TEM), and superconducting quantum interference magnetic measurement system, in terms of phase composition, microstructure and magnetic properties etc. The results indicated that when the Zn concentration was x = 0.5 or above, MnZn ferrite powders of single-phase can be obtained. When the Zn concentration was below x = 0.5, impurity α-Fe2O3-phase will appear. The lattice constant of MnZn ferrite phase showed a trend of first decreasing, then increasing, and finally decreasing again with the increasing Zn concentration. As the Zn concentration increased, the FTIR absorption peaks of MnZn ferrite phase showed monotonically red shift. The intensity of Raman peaks increased with the increase of Zn concentration. The valences of Fe and Zn were +3 and +2, while Mn exhibits different valence states, with +2, +3, and +4 valences. The prepared powders all presented hollow spherical shell morphology, with no abnormally large particles observed. With the increase of Zn concentration, the variation range of the saturation magnetization (Ms) 8.99~55.87 emu/g, the remanence (Mr) 0.24~6.50 emu/g, the coercivity (Hc) 28.03~107.63 Oe, and the squareness ratio (Mr/Ms) 0.02~0.12, while the saturation magnetization (Ms) decreased monotonically (except for x = 0.5). Furthermore, when the Zn concentration was x = 0.5, the comprehensive characteristics of MnZn ferrite are optimal.

Key words:  inorganic non-metallic materials      zinc concentration      chemical sol-spray drying-calcination      MnZn ferrite      magnetic properties      soft magnetic     
Received:  07 May 2024     
ZTFLH:  TB32  
Fund: National Key Research and Development Project(2022YFB4300101);Postdoctoral Research Initiation Project Supported by Central South University(140050022)
Corresponding Authors:  XU Zhanyuan, Tel: (0731)81890908, E-mail: xu201230071633@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.193     OR     https://www.cjmr.org/EN/Y2025/V39/I1/55

Fig.1  XRD patterns of powders with different zinc concentration
SamplesAverage crystallite size / nmLattice parameter / nm
x = 0.181.00.84549 ± 0.00039
x = 0.395.10.84404 ± 0.00033
x = 0.5> 1000.84534 ± 0.00010
x = 0.7> 1000.84490 ± 0.00014
x = 0.962.70.84413 ± 0.00015
Table 1  Average crystallite size and lattice parameters of powders with different zinc concentration
Fig.2  FTIR spectra of powders with different zinc concentration
Fig.3  Raman spectra of powders with different zinc concentration
Fig.4  XPS spectra of powders with different zinc concentration (a~d) x = 0.3, (e~h) x = 0.9
Fig.5  SEM images of powders with different zinc concentration
(a) x = 0.1, (b) x = 0.3, (c) x = 0.5, (d) x = 0.7, (e) x = 0.9
Fig.6  Bright field images and high resolution images of powders with different zinc concentration (a~d) x = 0.3, (e, f) x = 0.9
Fig.7  Hysteresis loops of powders with different zinc concentration
SamplesMs / emu·g-1Mr / emu·g-1Hc / OeMr/Ms
x = 0.155.872.2548.860.04
x = 0.349.851.0928.550.02
x = 0.553.496.5028.030.12
x = 0.727.451.25107.630.05
x = 0.98.990.24101.940.03
Table 2  Magnetic parameters of powders with different zinc concentration
1 Al-Hada N M, Kamari H M, Shaari A H, et al. Fabrication and characterization of Manganese-Zinc Ferrite nanoparticles produced utilizing heat treatment technique [J]. Results Phys., 2019, 12: 1821
2 Al Angari Y M. Electromagnetic properties of nanocrystalline Mn-Zn ferrite synthesized from spent Zn-C battery via egg-white route [J]. Int. J. Electrochem. Sci., 2018, 13(12): 12331
3 Angadi Jagadeesha V, Anupama A V, Kumar R, et al. Dose dependent modifications in structural and magnetic properties of γ-irradiated nanocrystalline Mn0.5Zn0.5Fe2O4 ceramics [J]. Ceram. Int., 2017, 43(1): 523
4 Waqas H, Qureshi A H. Influence of pH on nanosized Mn-Zn ferrite synthesized by sol-gel auto combustion process [J]. J. Therm. Anal. Calorim., 2009, 98(2): 355
5 Venkataraju C, Sathishkumar G, Sivakumar K. Effect of nickel on the electrical properties of nanostructured MnZn ferrite [J]. J. Alloy. Compd., 2010, 498(2): 203
6 Zheng Z G, Zhong X C, Zhang Y H, et al. Synthesis, structure and magnetic properties of nanocrystalline Zn x Mn1 - x Fe2O4 prepared by ball milling [J]. J. Alloy. Compd., 2008, 466(1-2): 377
7 Li H H, Feng Z K, He H H, et al. Effect of Fe2+content in raw materials on Mn-Zn ferrite magnetic properties[J], J. Magn. Magn. Mater., 2001, 237(2): 153
8 Zhang Y M, Yang Y J, Chen C L, et al. Effects of Zn content on microstructure and magnetic properties of MnZn ferrite [J]. J. Ceram. Process. Res., 2023, 24(2): 342
9 Shang Y J, Duan Z X, Luo F. Fabrication and property analysis of Mn x Zn1 - x Fe2O4 nanofibers and homogeneous-fiber-reinforced MnZn ferrite materials [J]. J. Magn. Magn. Mater., 2024, 589: 171429
10 Sertkol M, Slimani Y, Almessiere M A, et al. Magnetic and optical characterizations of Dy-Eu co-substituted Mn0.5Zn0.5Fe2O4 nanospinel ferrites [J]. J. Mol. Struct., 2023, 1277: 134891
11 Wu G H, Yu Z, Guo R D, et al. Effects of Sn substitution on the microstructural and electromagnetic properties of MnZn ferrite for high-frequency applications[J]. J. Phys. D-Appl. Phys., 2023, 56(18): 185001
12 Demir A, Guner S, Bakis Y, et al. Magnetic and optical properties of Mn1 - x Zn x Fe2O4 nanoparticles [J]. J. Inorg. Organomet. Polym. Mater., 2014, 24: 729
13 Murugesan C, Chandrasekaran G. Structural and magnetic properties of Mn1 - x Zn x Fe2O4 ferrite nanoparticles [J]. J. Supercond. Nov. Magn, 2016, 29(11): 2887
14 Kareem S H, Ali A A, Shamsuddin M, et al. Nanostructural, morphological and magnetic studies of PEG/Mn(1 - X)Zn( X)Fe2O4 nano-particles synthesized by co-precipitation [J]. Ceram. Int., 2015, 41(9): 11702
15 Thota S, Kashyap S C, Sharma S K, et al. Cation distribution in Ni-substituted Mn0.5Zn0.5Fe2O4 nanoparticles: A Raman, Mössbauer, X-Ray diffraction and electron spectroscopy study[J]. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 2016, 206: 69
16 Thota S, Kashyap S C, Sharma S K, et al. Micro Raman, Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: role of Mn [J]. J. Phys. Chem. Solids, 2016, 91: 136
17 Chernyshova I V, Hochella Jr M F, Madden A S. Size-dependent structural transformations of hematite nanoparticles. 1. Phase Transition [J]. Phys. Chem. Chem. Phys., 2007, 9: 1736
pmid: 17396185
18 Chamritski I, Burns G. Infrared-and Raman-Active Phonons of magnetite, maghemite, and hematite: A computer simulation and spectroscopic study [J]. J. Phys. Chem. B, 2005, 109(11): 4965
19 Li M L, Fang H Y, Li H L, et al. Synthesis and characterization of MnZn ferrite nanoparticles with improved saturation magnetiza-tion [J]. J. Supercond. Nov. Magn, 2017, 30: 2275
20 Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials [J]. Appl. Surf. Sci., 2008, 254(8): 2441
21 Flak D, Chen Q L, Mun B S, et al. In situ ambient pressure XPS observation of surface chemistry and electronic structure of α-Fe2O3 and γ-Fe2O3 nanoparticles [J]. Appl. Surf. Sci., 2018, 455: 1019
22 Liu P, He H P, Wei G L, et al. Effect of Mn substitution on the promoted formaldehyde oxidation over spinel ferrite: Catalyst characterization, performance and reaction mMechanism [J]. Appl. Catal. B-Environ., 2016, 182: 476
23 Yang S J, Guo Y F, Yan N Q, et al. Elemental mercury capture from flue gas by magnetic Mn-Fe spinel: Effect of chemical heterogeneity [J]. Ind. Eng. Chem. Res., 2011, 50(16): 9650
24 Nesbitt H W, Banerjee D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation [J]. Am. Miner., 1998, 83(3-4): 305
25 Xu Z Y, Fan J L, Zhao S Q, et al. Microstructure and magnetic properties of MnZn ferrite powders prepared by nano-in-situ composite method [J]. J. Alloy. Compd., 2020: 155285
26 Zapata A, Herrera G. Effect of zinc concentration on the microstructure and relaxation frequency of Mn-Zn ferrites synthesized by solid state reaction [J]. Ceram. Int., 2013, 39(7): 7853
27 Kagdi A R, Solanki N P, Carvalho F E, et al. Influence of Mg substitution on structural, magnetic and dielectric properties of X-type barium-zinc hexaferrites Ba2Zn2 - x Mg x Fe28O46 [J]. J. Alloy. Compd., 2018, 741: 377
28 Chauhan C C, Kagdi A R, Jotania R B, et al. Structural, magnetic and dielectric properties of Co-Zr substituted M-type calcium hexagonal ferrite nanoparticles in the presence of α-Fe2O3 phase [J]. Ceram. Int., 2018, 44(15): 17812
29 Mali A, Ataie A. Structural characterization of nano-crystalline BaFe12O19 powders synthesized by sol-gel combustion route [J]. Scr. Mater., 2005, 53(9): 1065
[1] DENG Xiaolong, WANG Shanshan, DAI Xinxin, LIU Yi, HUANG Jinzhao. Preparation and Performance of Electrocatalyst of Amorphous FeOOH Covered Layered Double Hydroxide CoFeAl-Heterostructure for Efficient Overall Water Splitting in Alkaline Solution[J]. 材料研究学报, 2025, 39(1): 71-80.
[2] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[3] YUAN Xinzhong, WANG Cunjing, YAO Peng, LI Qiong, MA Zhihua, LI Pengfa. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors[J]. 材料研究学报, 2024, 38(7): 529-536.
[4] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
[5] WU Qianfang, HE Qun, CHANG Bing, QUAN Yuxin, HU Jingwen, LI Saisai, CAO Yingnan. Preparation and Neutron Shielding Properties of Fiberglass Based Thermal Insulating Porous Ceramics[J]. 材料研究学报, 2024, 38(6): 471-480.
[6] WANG Jun, WANG Xuanli, LIU Shuang, SONG Rui, SONG Xiwen. Effect of Mn Doping on Microstructure and Thermal Conductivity of (Y0.4Er0.6)3Al5O12 Ceramics Material for Thermal Barrier Coating[J]. 材料研究学报, 2024, 38(6): 463-470.
[7] GUO Zhinan, ZHAO Qiang, LI Shuying, WANG Junli, XU Lin, SHANG Jianpeng, GUO Yong. Preparation and Degradation Performance of Composite Photocatalyst of Two-Dimensional Layered ZnNiAl-LDH/ Cuprous Oxide Particles[J]. 材料研究学报, 2024, 38(6): 423-429.
[8] WANG Wei, CHANG Wenjuan, LV Fanfan, XIE Zelei, YU Chengcheng. Preparation and Tribological Properties of Fluorinated Boron Nitride Nanosheets Water-based Additive[J]. 材料研究学报, 2024, 38(6): 410-422.
[9] TAN Yiling, LI Shichun, SUN Jie. Preparation of Metal-organic Framework Porous Glass agSALEM-2[J]. 材料研究学报, 2024, 38(5): 373-378.
[10] XU Hui, ZHANG Peiyuan, XU Nana, LIU Tao, ZHANG Xiaoshan, WANG Bing, WANG Yingde. Mechanical Property and Thermal Insulation Performance of SiO2/ZrO2 Nanofiber Membranes with High Thermal Stability[J]. 材料研究学报, 2024, 38(5): 365-372.
[11] WANG Yan, ZHANG Hao, CHANG Na, WANG Haitao. Preparation of Acid-alkali Modified Coal Fly Ash Adsorbent and Its Removal Performance on Dyes[J]. 材料研究学报, 2024, 38(5): 379-389.
[12] LI Jing, XU Yingchao, FAN Haoshuang, LU Yi, LI Li, ZHANG Xianyu. Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor[J]. 材料研究学报, 2024, 38(4): 288-296.
[13] LIU Rui, ZHANG Dingdong, ZHANG Hui, REN Wencai, DU Jinhong. Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes[J]. 材料研究学报, 2024, 38(3): 168-176.
[14] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
[15] YU Moxin, SUN Yuhang, SHI Wenxu, ZHANG Chen, WANG Xiaoting. Preparation of Fe-doped Biochar and Its Adsorption Performance for Ni2+ and Co2+ Metal Ions[J]. 材料研究学报, 2024, 38(11): 849-860.
No Suggested Reading articles found!