Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (6): 463-470    DOI: 10.11901/1005.3093.2023.415
ARTICLES Current Issue | Archive | Adv Search |
Effect of Mn Doping on Microstructure and Thermal Conductivity of (Y0.4Er0.6)3Al5O12 Ceramics Material for Thermal Barrier Coating
WANG Jun, WANG Xuanli(), LIU Shuang, SONG Rui, SONG Xiwen
School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
Cite this article: 

WANG Jun, WANG Xuanli, LIU Shuang, SONG Rui, SONG Xiwen. Effect of Mn Doping on Microstructure and Thermal Conductivity of (Y0.4Er0.6)3Al5O12 Ceramics Material for Thermal Barrier Coating. Chinese Journal of Materials Research, 2024, 38(6): 463-470.

Download:  HTML  PDF(11102KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ceramic materials (Y0.4Er0.6)3(Al1 - y Mn y )5O12 (y = 0, 0.02, 0.04, 0.06, 0.08, 0.1) were prepared by solid phase synthesis method, and their microstructure and thermal conductivity were studied by X-ray diffractometer and Rietveld refinement method, X-ray photoelectron spectroscopy, scanning electron microscopy, X-ray energy spectroscopy, transmission electron microscopy, laser thermal conductivity tester. The results show that the ceramic materials of (Y0.4Er0.6)3(Al1 - y Mn y )5O12 are all single YAG phase, with the increase of Mn doping, the lattice constant and cell volume decrease and then increase, Mn2+ gradually occupies the position of Al3+ in the cell, keeping the crystal structure of Y3Al5O12 unchanged; the thermal conductivity of the ceramic material (Y0.4Er0.6)3(Al1 - y Mn y )5O12 is significantly reduced, with the lowest thermal conductivity at Mn doping y = 0.06, which is about 1.38 W/(m·K) at 1100oC, and reduced by about 34.6 % compared to that of the pure ceramic material YAG (2.1 W/(m·K)).

Key words:  inorganic non-metallic materials      thermal barrier coating      yttrium aluminum garnet      double-site doping      microstructure      thermal conductivity     
Received:  23 August 2023     
ZTFLH:  TQ174.1  
Fund: National Natural Science Foundation of China(52372062);Basic Research Operating Expenses of Colleges and Universities Directly under the Inner Mongolia Autonomous Region(2023QNJS016);the Innovation Fund of Inner Mongolia University of Science and Technology(2019QDL-B03)
Corresponding Authors:  WANG Xuanli, Tel: 15374723217, E-mail: wangxuanli917@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.415     OR     https://www.cjmr.org/EN/Y2024/V38/I6/463

Fig.1  XRD pattern (a) and local magnified image (b) of (Y0.4Er0.6)3(Al1 - y Mn y )5O12 (y = 0, 0.02, 0.04, 0.06, 0.08, 0.1) ceramic materials
Fig.2  Rietveld refinement results of (Y0.4Er0.6)3(Al1 - y Mn y )5O12 ceramic materials (a) y = 0; (b) y = 0.02; (c) y = 0.04; (d) y = 0.06; (e) y = 0.08; (f) y = 0.1
ya = b = c /nmα = β = γ / (o)V / nm3RWP / %Rp / %
01.19917901.724418.476.20
0.021.19923901.724678.786.50
0.041.19913901.724239.256.80
0.061.19951901.725889.276.75
0.081.19984901.727308.266.12
0.11.20116901.7330310.167.59
Table 1  Structure parameters and refined data of (Y0.4Er0.6)3(Al1 - y Mn y )5O12 ceramic materials obtained by Rietveld refinement
LabelElem.Mult.xyzFrac.
Mn1Mn2+160000.211
Al1Al3+160000.789
Mn3Mn2+240.37500.250.171
Al2Al3+240.37500.250.829
Er3Er3+240.12500.250.6
Y1Y3+240.12500.250.4
O1O2-96-0.0335260.0507890.1488871
Table 2  Refined structural parameters of the Rietveld fitting for the (Y0.4Er0.6)3(Al0.94Mn0.06)5O12 ceramic material
Fig.3  XPS full spectra of (Y0.4Er0.6)3(Al1 - y Mn y )5O12 ceramic materials with different doping contents (a) y = 0.02; (b) y = 0.04; (c) y = 0.06; (d) y = 0.08; (e) y = 0.1
Fig.4  Mn2p XPS fine spectra of (Y0.4Er0.6)3(Al1 - yMny)5O12 ceramic materials with different doping contents (a) y = 0.02; (b) y = 0.04; (c) y = 0.06; (d) y = 0.08; (e) y = 0.1
Fig.5  TEM and HRTEM images of (Y0.4Er0.6)3(Al0.94Mn0.06)5O12 ceramic material
Fig.6  FESEM images of (Y0.4Er0.6)3(Al1 - y Mn y )5O12 ceramic materials with different doping contents (a) y = 0; (b) y = 0.02; (c) y = 0.04; (d) y = 0.06; (e) y = 0.08; (f) y = 0.1
Fig.7  EDS energy spectrum of (Y0.4Er0.6)3(Al0.94Mn0.06)5O12 ceramic material
y25oC100oC300oC500oC700oC900oC1100oC
00.810.730.650.600.570.550.54
0.020.730.670.620.560.530.520.53
0.040.710.670.620.570.530.540.50
0.060.650.630.590.550.540.510.46
0.080.660.620.580.590.570.550.54
0.10.600.580.580.520.540.520.50
Table 3  Thermal diffusivity of (Y0.4Er0.6)3(Al1 - y Mn y )5O12 ceramics at different temperatures (mm2/s)
Fig.8  Thermal conductivity of (Y0.4Er0.6)3(Al1 - y Mn y )5O12 (y = 0, 0.02, 0.04, 0.06, 0.08, 0.1) ceramic materials
1 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296(5566): 280
pmid: 11951028
2 Clarke D R, Phillpot S R. Thermal barrier coating materials [J]. Mater. Today, 2005, 8(6): 22
3 Kumar A, Moledina J, Liu Y, et al. Nano-micro-structured 6%~8% YSZ thermal barrier coatings: a comprehensive review of comparative performance analysis [J]. Coatings, 2021, 11(12): 1474
4 Li R Y, Xie M, Zhang Y H, et al. Physical properties of Er2O3 Doped Gd2(Zr0.8Ti0.2)2O7 ceramic materials [J]. Chin. J. Mater. Res., 2022, 36(1): 49
李瑞一, 谢 敏, 张永和 等. Er2O3掺杂Gd2(Zr0.8Ti0.2)2O7陶瓷的物理性能 [J]. 材料研究学报, 2022, 36(1): 49
doi: 10.11901/1005.3093.2021.230
5 Jiang T, Xie M, Wang X L, et al. Effects of Nb5+ doping on thermal properties of Gd2(Zr1 - x Nb x )2O7+ x ceramics [J]. Adv. Appl. Ceram., 2020, 119(4): 212
6 Yan Z M, Levi A, Zhang Y, et al. A numerical evaluation and guideline for thermal barrier coatings on gasoline compression ignition engines [J]. Int. J. Eng. Res., 2023, 24(5): 2206
7 Xie M, An S L, Song X W, et al. Effects of Er3+ doping on structure and thermal properties of (Sm1 - x Er x )2Zr2O7 ceramics for thermal barrier coating [J]. J. Rare Earths, 2022, 40(12): 1920
8 Jiang T, Xie M, Guan L L, et al. Effect of Nb5+ and Cu2+ codoping on thermal properties of Gd2Zr2O7 Ceramic [J]. J. Rare Earths, 2021, 39(2): 180
9 An G S, Li W S, Feng L, et al. Isothermal oxidation and TGO growth behaviors of YAG/YSZ double-ceramic-layer thermal barrier coatings [J]. Ceram. Int., 2021, 47(17): 24320
10 Kumar R, Rommel S, Jiang C, et al. Effect of CMAS viscosity on the infiltration depth in thermal barrier coatings of different microstructures [J]. Surf. Coat. Technol., 2022, 432: 128039
11 Sun S Y, Xue Z L, He W T, et al. Corrosion resistant plasma sprayed (Y0.8Gd0.2)3Al5O12/YSZ thermal barrier coatings towards molten calcium-magnesium-alumina-silicate [J]. Ceram. Int., 2019, 45(7): 8138
12 Li M H, Wang D R, Xue J C, et al. Preparation of Pd-doped Y3Al5O12 thermal barrier coatings using cathode plasma electrolytic deposition [J]. Ceram. Int., 2020, 46(6): 7019
13 Owoseni T A, Rincon Romero A, Pala Z, et al. YAG thermal barrier coatings deposited by suspension and solution precursor thermal spray [J]. Ceram. Int., 2021, 47(17): 23803
14 Wang X L, Xing J X, Xie M, et al. Influence of Er3+ doping on the mechanical and thermophysical properties of (Er x Y1 - x )3Al5O12 ceramics [J]. Process. Appl. Ceram., 2023, 17(1): 23
15 Liu Y G, Peng P, Fang M H, et al. Y3 - x Er x Al5O12 aluminate ceramics: preparation, thermal properties and theoretical model of thermal conductivity [J]. Adv. Eng. Mater., 2012, 14(3): 170
16 Wang J, Xu F, Wheatley R J, et al. Yb3+ doping effects on thermal conductivity and thermal expansion of yttrium aluminium garnet [J]. Ceram. Int., 2016, 42(12): 14228
17 Xie M, Cui Y, Zhang K, et al. Analysis of thermal conductivity behavior of Yb3+ and Er3+ Co-doped Sm2Zr2O7 Ceramics [J]. Aeronaut. Manuf. Technol., 2023, 66(suppl.1) : 61
谢 敏, 崔 越, 张 凯 等. Yb3+、Er3+共掺杂Sm2Zr2O7陶瓷导热性能研究 [J]. 航空制造技术, 2023, 66(): 61
18 Shu J, Lu M L, Zhang G F, et al. Preparation and redox performance of nanosized Ce0.92M0.08O2 (M = Co, Mn, Fe, La) solid solutions [J]. J. Mater. Eng., 2023, 51(3): 138
束 俊, 陆旻琳, 张国芳 等. 纳米Ce0.92M0.08O2 (M = Co, Mn, Fe, La) 固溶体的制备及其氧化还原性能 [J]. 材料工程, 2023, 51(3): 138
19 Xue Z L, Ma Y, Gong S K, et al. Influence of Yb3+ doping on phase stability and thermophysical properties of (Y1 - x Yb x )3Al5O12 under high temperature [J]. Ceram. Int., 2017, 43(9): 7153
20 Du Z, Zhao Y L, Kuang D H, et al. Preparation and photocatalytic properties of BiFe1 - x Mn x O3 nano-powders [J]. Mater. Rep., 2023, 37(13): 21100037-1
杜 泽, 赵尉伶, 匡代洪 等. BiFe1 - x Mn x O3纳米粉末的制备及光催化性能 [J]. 材料导报, 2023, 37(13): 21100037-1
21 Huang H Y, Xiang W D, Zhang Z M, et al. Preparation and luminescence properties of cerium, manganese Co-doping YAG glass ceramics [J]. J. Chin. Soc. Rare Earths, 2012, 30(6): 726
黄海宇, 向卫东, 张志敏 等. YAG: Ce, Mn微晶玻璃的制备及光谱性能研究 [J]. 中国稀土学报, 2012, 30(6): 726
[1] WU Qianfang, HE Qun, CHANG Bing, QUAN Yuxin, HU Jingwen, LI Saisai, CAO Yingnan. Preparation and Neutron Shielding Properties of Fiberglass Based Thermal Insulating Porous Ceramics[J]. 材料研究学报, 2024, 38(6): 471-480.
[2] LI Yuanyuan, LIANG Jian, XIONG Ziliu, MIAO Bin, TIAN Xiugang, QI Jianjun, ZHENG Shijian. Influence of Alloying Elements on Interfacial Layer- and Galvanized Layer-Structure of New Hot-dip Galvanized Dual-phase Steel[J]. 材料研究学报, 2024, 38(6): 446-452.
[3] GUO Zhinan, ZHAO Qiang, LI Shuying, WANG Junli, XU Lin, SHANG Jianpeng, GUO Yong. Preparation and Degradation Performance of Composite Photocatalyst of Two-Dimensional Layered ZnNiAl-LDH/ Cuprous Oxide Particles[J]. 材料研究学报, 2024, 38(6): 423-429.
[4] WANG Wei, CHANG Wenjuan, LV Fanfan, XIE Zelei, YU Chengcheng. Preparation and Tribological Properties of Fluorinated Boron Nitride Nanosheets Water-based Additive[J]. 材料研究学报, 2024, 38(6): 410-422.
[5] TAN Yiling, LI Shichun, SUN Jie. Preparation of Metal-organic Framework Porous Glass agSALEM-2[J]. 材料研究学报, 2024, 38(5): 373-378.
[6] ZHANG Jia, GAO Minghao, LUAN Shengjia, XU Na, CHANG Hui, DENG Yuting, HOU Wanliang, CHANG Xinchun. Effect of Feedstock Powders on Microstructure and Properties of CoNiCrAlY Coatings[J]. 材料研究学报, 2024, 38(5): 347-355.
[7] XU Hui, ZHANG Peiyuan, XU Nana, LIU Tao, ZHANG Xiaoshan, WANG Bing, WANG Yingde. Mechanical Property and Thermal Insulation Performance of SiO2/ZrO2 Nanofiber Membranes with High Thermal Stability[J]. 材料研究学报, 2024, 38(5): 365-372.
[8] WANG Yan, ZHANG Hao, CHANG Na, WANG Haitao. Preparation of Acid-alkali Modified Coal Fly Ash Adsorbent and Its Removal Performance on Dyes[J]. 材料研究学报, 2024, 38(5): 379-389.
[9] WU Yingming, JIANG Keda, LIU Shengdan, FAN Shitong, QIN Qiuhui, LI Jun. Hot Compression Deformation Behavior of 6013 Aluminum Alloy by Low lnZ[J]. 材料研究学报, 2024, 38(5): 337-346.
[10] TIAN Songwen, LIU Lirong, TIAN Sugui. Creep Behavior and Mechanism of a Re/Ru-containing Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2024, 38(4): 248-256.
[11] LI Jing, XU Yingchao, FAN Haoshuang, LU Yi, LI Li, ZHANG Xianyu. Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor[J]. 材料研究学报, 2024, 38(4): 288-296.
[12] WANG Yuzhao, JIANG Zhonghua, JIA Chunni, ZHANG Yutuo, WANG Pei. Microstructure and Mechanical Properties of an Austempered Nanostructured Bainitic Steel[J]. 材料研究学报, 2024, 38(4): 279-287.
[13] LIU Rui, ZHANG Dingdong, ZHANG Hui, REN Wencai, DU Jinhong. Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes[J]. 材料研究学报, 2024, 38(3): 168-176.
[14] QI Kaili, HU Dejiang, GAO Chong, LIU Feng, PANG Jianchao, SHAO Chenwei, YANG Mengqi, LI Shouxin, ZHANG Zhefeng. Notch Tensile Properties Prediction of Low-alloy Steel Processed by Different Tempering Temperatures[J]. 材料研究学报, 2024, 38(3): 197-207.
[15] LIU Chenye, LUO Tianjiao, LI Yingju, FENG Xiaohui, HUANG Qiuyan, ZHENG Ce, ZHU Cheng, YANG Yuansheng. Microstructure and Properties of As-cast Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi Alloys with High Modulus[J]. 材料研究学报, 2024, 38(3): 187-196.
No Suggested Reading articles found!