Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (6): 443-454    DOI: 10.11901/1005.3093.2024.334
ARTICLES Current Issue | Archive | Adv Search |
Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms
JIANG Ailong1,3, TAN Bingzhi2,4, PANG Jianchao2(), SHI Feng4, ZHANG Yunji1,3, ZOU Chenglu2, LI Shouxin2, WU Qihua1,3, LI Xiaowu4, ZHANG Zhefeng2
1.State Key Laboratory of Engine and Powertrain System, Weifang 261061, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Weichai Power Co., Ltd., Weifang 261061, China
4.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

JIANG Ailong, TAN Bingzhi, PANG Jianchao, SHI Feng, ZHANG Yunji, ZOU Chenglu, LI Shouxin, WU Qihua, LI Xiaowu, ZHANG Zhefeng. Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms. Chinese Journal of Materials Research, 2025, 39(6): 443-454.

Download:  HTML  PDF(2066KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure, tensile properties, low-cycle fatigue properties and corresponding damage mechanisms of typical compacted graphite cast irons RuT300 and RuT450 for engine cylinder head and block were studied at room temperature. The differences in properties and damage mechanisms between the two materials were systematically compared. The results show that the tensile strength and low-cycle fatigue life of RuT450 are higher than those of RuT300, but the difference of low-cycle fatigue life is small, which is mainly due to the difference in pearlite and ferrite content. The high content of lamellar pearlite in RuT450 leads to more serious tension-compression cyclic stress asymmetry. Fatigue cracks preferentially propagate between clusters composed of graphite and ferrite, and the increase of pearlite content has a certain effect on improving the tensile strength and low cycle fatigue life of compacted graphite cast irons. The Basquin & Coffin-Manson model can effectively predict the low-cycle fatigue life of compacted graphite cast irons.

Key words:  metallic materials      compacted graphite cast iron      microstructure      tensile property      low cycle fatigue      damage mechanism     
Received:  15 August 2024     
ZTFLH:  TG142.1  
Fund: Science Fund of State Key Laboratory of Engine and Powertrain System(skler202101);National Natural Science Foundation of China(52130002);National Natural Science Foundation of China(52321001)
Corresponding Authors:  PANG Jianchao, Tel: (024)83978779, E-mail: jcpang@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.334     OR     https://www.cjmr.org/EN/Y2025/V39/I6/443

MaterialCSiSnCuMnSFe
RuT3004.12.220.0350.390.190.051Bal.
RuT4503.812.200.090.800.320.01Bal.
Table 1  Chemical compositions of RuT300 and RuT450 (mass fraction,%)
Fig.1  Dimension of specimens (a) tensile, (b) low cycle fatigue
Fig.2  Microstructures of RuT300 (a) and RuT450 (b)
MaterialUTS / MPaYS / MPaEF / %E / GPa
RuT3004013045.3135
RuT4504483202.3128
Table 2  Tensile properties of the RuT300 and RuT450
Fig.3  Engineering stress-strain curves of RuT300 and RuT450
Total strain amplitude (Δεt/2) / %RuT300 RuT450
0.1105105-
0.1510000258901342723136
0.2586790033822254
0.25--2682791
0.3569282--
Table 3  Fatigue lives in LCF tests of the RuT450 and RuT300
Fig.4  The Δε/2-Nf relationship of the RuT300 and RuT450 (a) test lives, (b) average lives
Fig.5  Tensile fractographies of a RuT300 specimen[25]: (a) fracture morphology in macroscope; (b) ferrite; (c) pearlite; (d) defect
Fig.6  Tensile fractographies of a RuT450 specimen: (a) macroscopic morphology; (b) cleavage and cracks around spherical graphite; (c) large cleavage planes and cracks around worm-like graphite; (d) small cleavage planes and cracks around clusters of worm-like graphite
Fig.7  Cyclic stress response curves of the RuT300 (a) and RuT450 (b)
Fig.8  Hysteresis loops of RuT300 (a) and RuT450 (b) in different cycles
Fig.9  Half life hysteresis loops of RuT450 (a) and RuT300 (b) under different strain amplitudes
Fig.10  Fatigue fracture morphologies of the RuT300 (εt = 0.3%, Nf = 569 cycles) (a) macroscopic morphology; (b~d) microscopic morphology at positions b, c and d
Fig.11  Fatigue fracture morphologies of the RuT450 (εt = 0.2%, Nf = 3382 cycles) (a) macroscopic morphology; (b-d) microscopic morphology at positions b, c and d
Fig.12  Longitudinal section of fatigue fracture for RuT300 (εt = 0.15%, Nf = 10000) (a) the macroscopic fracture profile induced by the main crack; (b) and (c) are the microstructures and cracks at b, c marked in Fig.12a, respectively
Fig.13  Longitudinal section of fatigue fracture for RuT450 (εt = 0.25%, Nf = 2682) (a) the macroscopic fracture profile induced by the main crack; (b), (c) and (d) are the microstructures and secondary cracks at b, c and d marked in Fig.13a, respectively
Fig.14  Fatigue fracture mode of RuT300 (a) and RuT450 (b)
Fig.15  Results fitted with Basquin & Coffin-Manson relationship for LCF lives of two kinds of compacted graphite cast irons
Fig.16  Results of low cycle fatigue life prediction (a) RuT300, (b) RuT450
1 Wang L, Liu H, Huang C, et al. Three-dimensional transient cutting tool temperature field model based on periodic heat transfer for high-speed milling of compacted graphite iron[J]. J. Clean. Prod., 2021, 322: 129106
2 Guo Y, Mann J B, Yeung H, et al. Enhancing tool life in high-speed machining of compacted graphite iron (cgi) using controlled modulation[J]. Tribol. Lett., 2012, 47(1): 103
3 Niu J, Huang C, Su R, et al. Constitutive equation of compacted graphite iron (GJV450) at high temperature and high strain Rate[J]. Int. J. Adv. Manuf. Tech., 2021, 113(7-8): 2163
4 Lim C H, Goo B C. Development of compacted vermicular graphite cast iron for railway brake discs[J]. Met. Mater. Int., 2011, 17(2): 199
5 Hosdez J, Limodin N, Najjar D, et al. Fatigue crack growth in compacted and spheroidal graphite cast irons[J]. Int. J. Fatigue, 2020, 131: 105319
6 Jing G X, Zhang M X, Qu S, et al. Investigation into diesel engine cylinder head failure[J]. Eng. Fail. Anal., 2018, 90: 36
7 Li Y, Liu J, Zhong G, et al. Analysis of a diesel engine cylinder head failure caused by casting porosity defects[J]. Eng. Fail. Anal., 2021, 127: 105498
8 Yang Z L, Zhang D P, Yuan T Y, et al. Study on strength life analysis process of gas turbine disk[J]. J. Eng. Therm. Energy Power, 2021, 36(9): 195
杨子龙, 张大鹏, 苑天宇 等. 燃气轮机涡轮盘强度寿命分析流程研究[J]. 热能动力工程, 2021, 36(9): 195
9 Luo Y X, Li J X, Zhao M X, et al. Research on the method of low-cycle fatigue life prediction and reliability evaluation of gas turbine discs based on AK-MCS[J]. J. Xi'an Jiaotong Univ., 2024, 58(04): 107
罗宇轩, 李金星, 赵名星 等. 采用AK-MCS的燃气轮机轮盘疲劳寿命预测及可靠性评估[J]. 西安交通大学学报, 2024, 58(04): 107
10 Shao C W, Zhang P, Liu R, et al. Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: Property evaluation, damage mechanisms and life prediction[J]. Acta Mater., 2016, 103: 781
11 Sharifi S M H, Saeidi Googarchin H, Forouzesh F. Three dimensional analysis of low cycle fatigue failure in engine part subjected to Multi-axial variable amplitude thermo-mechanical load[J]. Eng. Fail. Anal., 2016, 62: 128
12 Yang W J, Pang J C, Wang L, et al. Thermo-mechanical fatigue life prediction based on the simulated component of cylinder head[J]. Eng. Fail. Anal., 2022, 135: 106105
13 Zhang M X, Pang J C, Meng L J, et al. Study on thermal fatigue behaviors of two kinds of vermicular graphite cast irons[J]. Mater. Sci. Eng. A, 2021, 814: 141212
14 Ribeiro B C M, Rocha F M, Andrade B M, et al. Influence of different concentrations of silicon, copper and tin in the microstructure and in the mechanical properties of compacted graphite iron[J]. Mater. Res., 2020, 23(2): e20190678
15 Wu Y Y, Li J P, Zhang Y J, et al. Effect of heat treatment on mechanical properties and thermal conductivity of RuT300 vermicular graphite cast iron[J]. Trans. Mater. Heat Treat., 2017, 38(2): 143
武岳岳, 李建平, 张延京 等. 热处理工艺对RuT300蠕墨铸铁力学性能与导热性能的影响[J]. 材料热处理学报, 2017, 38(2): 143
16 Chen Y, Pang J C, Li S X, et al. Damage mechanism and fatigue strength prediction of compacted graphite iron with different microstructures[J]. Int. J. Fatig., 2022, 164: 107126
17 Chen Y, Pang J C, Zou C L, et al. High-temperature fatigue damage mechanism and strength prediction of vermicular graphite iron[J]. Int. J. Fatig., 2023, 168: 107477
18 Meng L J, Zhang M X, Li Y J, et al. Tensile and fatigue properties of vermicular graphite cast irons RuT400 and RuT450[J]. Shanghai Metals, 2020, 42(4): 18
孟令健, 张孟枭, 李玉娟 等. 蠕墨铸铁RuT400与RuT450的拉伸与疲劳性能[J]. 上海金属, 2020, 42(4): 18
19 Fan Y N, Shi H J, Tokuda K. A generalized hysteresis energy method for fatigue and Creep-fatigue life prediction of 316L(N)[J]. Mater. Sci. Eng. A, 2015, 625: 205
20 Qiu Y, Pang J C, Li S X, et al. Influence of temperature on the Low-cycle fatigue properties of compacted graphite iron[J]. Int. J. Fatig., 2018, 117: 450
21 Lyu Y, Sun Y, Liu S, et al. Effect of tin on microstructure and mechanical properties of compacted graphite iron[J]. Int. J. Cast Metals Res., 2015, 28(5): 263
22 Tao D, Li J P, Yang Z, et al. Effect of pearlite content on high-temperature mechanical properties and thermophysical properties of vermicular graphite cast iron[J]. Trans. Mater. Heat Treat., 2018, 39(6): 83
23 Du C, Wang X, Hu L. Microstructure, mechanical properties and residual stress of a 2205DSS/Q235 rapidly formed LBW joint[J]. J. Mater. Proc. Technol., 2018, 256: 78
24 Qiu Y, Pang J C, Li S X, et al. Influence of thermal exposure on microstructure evolution and tensile fracture behaviors of compacted graphite iron[J]. Mater. Sci. Eng. A, 2016, 664: 75
25 Qu Y. Investigations on tensile and fatigue properties and damage mechanisms of compacted graphite irons used in diesel engine cylinder heads[D]. Beijing: University of Chinese Academy of Science, 2017
邱 宇. 柴油机缸盖用蠕墨铸铁的拉伸与疲劳性能及损伤机制研究[D]. 北京: 中国科学院大学, 2017
26 Yin Y, Tu Z, Zhou J, et al. 3D quantitative analysis of graphite morphology in ductile cast iron by X-ray microtomography[J]. Metall. Mater. Trans. A, 2017, 48(8): 3794
27 Coffin L. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Trans. Am. Soc. Mech. Eng., 1954, 76(6): 931
28 Manson S S. Behavior of materials under conditions of thermal stress[R]. National Advisory Committee for Aeronautics, Report 1170. Lewis Flight Propulsion Laboratory, 1954
29 Wang M, Pang J C, Zhang M X, et al. Thermo-mechanical fatigue behavior and life prediction of the Al-Si piston alloy[J]. Mater. Sci. Eng. A, 2018, 715: 62
[1] HAN Leilei, WANG Wentao, WU Yun, CHEN Jiajun, ZHAO Yong. High Temperature Growth Process of YBCO Superconducting Solder by Fluorine-free Chemical Solution Method[J]. 材料研究学报, 2025, 39(6): 474-480.
[2] WANG Henglin, DING Hanlin, CHAI Feng, LUO Xiaobing, WANG Zijian, XIANG Chongchen. Effect of Quenched-tempered Heat Treatment on Microstructure and Precipitation of High Strength Low Alloy Steel Containing Copper After Being Hot Rolled at Different Temperatures[J]. 材料研究学报, 2025, 39(6): 401-412.
[3] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
[4] YUAN Xinyu, SHI Fei, LIU Jingxiao, ZHANG Haojie, YANG Dayi, WANG Meiyu, REN Ming. Effect of Er2O3 Addition on Crystallization Behavior and Properties of Lithium Disilicate Glass Ceramics[J]. 材料研究学报, 2025, 39(6): 455-462.
[5] LI Haibin, XU Huiting, TANG Wei, LV Haibo, SHUAI Meirong. Electrolytic Polishing Capillary Effect Reaction Mechanism Research on Bonding Interface of Hot Rolled Carbon Steel / Stainless Steel[J]. 材料研究学报, 2025, 39(5): 362-370.
[6] HU Yong, LU Shifeng, YANG Tao, PAN Chunwang, LIU Lincheng, ZHAO Longzhi, TANG Yanchuan, LIU Dejia, JIAO Haitao. Microstructure and Properties of FeCoCrNiMn/6061 Al-alloy Matrix Composites[J]. 材料研究学报, 2025, 39(5): 353-361.
[7] WU Yucheng, ZUO Tong, TAN Xiaoyue, ZHU Xiaoyong, LIU Jiaqin. Oxidation Behavior of Self-passivated W-Cr-Zr Alloys as the First Wall Candidate Material[J]. 材料研究学报, 2025, 39(5): 343-352.
[8] QIU Wei, LI Yulin, YAN Rui, LI Yawen, CHEN Wei, GAN Lang, REN Yanjie, CHEN Jian. Effect of Al Content on Corrosion and Discharge Properties of Extruded Mg-Al-Ca-Mn Alloys as Anode Material for Mg-air Batteries[J]. 材料研究学报, 2025, 39(5): 389-400.
[9] LI Honglei, LIU Chuang, LU Zhengwei, CHU Tianyi, CHEN Yuqiu, JIANG Sumeng, GONG Jun, PEI Zhiliang. Preparation and Performance of Ni-Al2O3/Diamond Composite Coating[J]. 材料研究学报, 2025, 39(4): 314-320.
[10] FU Chunguo, XU Shiwei, YANG Xiaoyi, LI Mengnie. Effect of Welding Heat Source Mode on Microstructure and Properties of Weld Joints for 5083-H111 Al-alloy[J]. 材料研究学报, 2025, 39(4): 305-313.
[11] CHEN Shiyu, LI Wei, KUANG Haiyan, GAO Shaowei, PANG Dongfang. Dielectric-, Ferroelectric- and Piezoelectric-property of Lu3+ Doped 0.67BiFeO3-0.33BaTiO3 Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2025, 39(4): 272-280.
[12] XU Congmin, SUN Shuwen, ZHU Wensheng, CHEN Zhiqiang, LI Chengchen. Influence of Ternary Compound Biocides on Corrosion Behavior of P110 Steel[J]. 材料研究学报, 2025, 39(4): 281-288.
[13] ZHANG Huifang, WU Hao, XIAO Chuanmin, LI Qi, XIE Jun, LI Jinguo, WANG Zhenjiang, YU Jinjiang. Effect of Heat Treatment on Microstructure and Tensile Properties of a Typical γʹ-strengthened Co-based Superalloy[J]. 材料研究学报, 2025, 39(3): 198-206.
[14] RAN Zizuo, ZHANG Shuang, SU Zhaoyi, WANG Yang, ZOU Cunlei, ZHAO Yajun, WANG Zengrui, JIANG Weiwei, DONG Chenxi, DONG Chuang. Cluster-formula-based Composition Optimization of 316 Stainless Steel and Its Experimental Verification[J]. 材料研究学报, 2025, 39(3): 207-216.
[15] ZHONG Weijie, JIAO Dongling, LIU Zhongwu, LIU Na, XU Wenyong, LI Zhou, ZHANG Guoqing. High Temperature Oxidation of a HIPed Nickel-based Superalloy[J]. 材料研究学报, 2025, 39(3): 172-184.
No Suggested Reading articles found!