Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (6): 423-429    DOI: 10.11901/1005.3093.2023.328
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Degradation Performance of Composite Photocatalyst of Two-Dimensional Layered ZnNiAl-LDH/ Cuprous Oxide Particles
GUO Zhinan1, ZHAO Qiang1,2(), LI Shuying1,3, WANG Junli1,3, XU Lin1, SHANG Jianpeng1,2, GUO Yong1,2
1.School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China
2.Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Datong 037009, China
3.Shanxi Province Union laboratory of Clean Energy Materials, Shanxi Datong University, Datong 037009, China
Cite this article: 

GUO Zhinan, ZHAO Qiang, LI Shuying, WANG Junli, XU Lin, SHANG Jianpeng, GUO Yong. Preparation and Degradation Performance of Composite Photocatalyst of Two-Dimensional Layered ZnNiAl-LDH/ Cuprous Oxide Particles. Chinese Journal of Materials Research, 2024, 38(6): 423-429.

Download:  HTML  PDF(5550KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A highly active and stable visible light photocatalyst of composite ZnNiAl-LDH/Cu2O was successfully prepared by using co-precipitation method to depositing two-dimensional layered ZnNiAl-ZnNiAl-LDH on Cu2O particles. The photocatalytic activity of the prepared composite catalyst was evaluated by the degradation of tetracycline (TC) under visible light. It is found that the developed ZnNiAl-LDH/Cu2O exhibited higher activity than the pure Cu2O, while the ZnNiAl-LDH/Cu2O photocatalyst doped with 7% of ZnNiAl-LDH exhibited the highest photodegradation activity, by which 89.6% of TC was decomposed within 50 minutes. The ZnNiAl-LDH/Cu2O photocatalyst present considerably high photocatalytic degradation activities on TC. The high photodegradation efficiency of 7%ZnNiAl-LDH/Cu2O could be ascribed to the efficient interfacial charge transfer at the composite and the synergistic effect between Cu2O and ZnNiAl-LDH, which resulted in the enhanced separation efficiency of photogenerated electron-hole pairs.

Key words:  inorganic non-metallic materials      precipitation method      cuprous oxide      ZnNiAl-LDH      tetracycline      photodegradation property     
Received:  03 July 2023     
ZTFLH:  O643  
Fund: National Natural Science Foundation of China(21908135);Natural Science Foundation of Shanxi Province(201901D111308,201901D211435,201801D221057);Overseas Students Science and Technology Activities Project Merit Funding of Shanxi Province(2019-20);PhD Research Startup Foundation of Shanxi Datong Univeisity(2018-B-01,2020-B-02);Postgraduate Education Innovation Project of Shanxi Datong University(21CX22,22CX17);Shanxi Province Innovation and Entrepreneurship Training Program for College Students(20220807,2016172)
Corresponding Authors:  ZHAO Qiang, Tel: 15934234565, E-mail: zhaoqiangtyla@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.328     OR     https://www.cjmr.org/EN/Y2024/V38/I6/423

Fig.1  XRD patterns of Cu2O and 7%ZnNiAl/Cu2O composite
Fig.2  SEM images of 7%ZnNiAl-LDH/Cu2O composite
Fig.3  TEM images of 7%ZnNiAl-LDH/Cu2O composite (a, b) and HRTEM image of 7%ZnNiAl-LDH/Cu2O composite (c)
Fig.4  XPS analysis for 7%ZnNiAl-LDH/Cu2O composite (a) survey spectrum; (b) Cu 2p XPS spectrum
Fig.5  UV-vis DRS spectra (a) and optical absorption edges (b) of Cu2O and 7%ZnNiAl-LDH/Cu2O composite
SampleSurface area / m2·g-1Pore volume / cm3·g-1Area pore size / nm
ZnNiAl-LDH67.420.434.723
7% ZnNiAl-LDH/Cu2O82.810.523.928
Cu2O8.09--
Table 1  Textural properties of the ZnNiAl-LDH and 7% ZnNiAl-LDH/Cu2O
Fig.6  Nitrogen adsorptiondesorption isotherms of ZnNiAl-LDH and 7% ZnNiAl-LDH/Cu2O
Fig.7  Photocurrent time dependence curves (a) and EIS Nyquist plots of catalyts (b)
Fig.8  Photocatalytics degradation curves for decomposition of TC with different photocatalysts
Fig.9  DMPO spin-trapping EPR spectra of 7%ZnNiAl-LDH/Cu2O composite with irradiation for 5 min in methanol dispersion (for DMPO-·O2-) (a) and aqueous dispersion (for DEPO-·OH) (b)
Fig.10  Proposed mechanism of the ZnNiAl-LDH/Cu2O photocatalyst under visible light irradiation
1 Zheng W, Can L, Kazunari D. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting [J]. Chem. Soc. Rev, 2018, 48(7): 2109
2 Peng Z T, Gao Y R, Yao C, et al. Preparation and photocatalytic activity of Fe/Yb Co-doped titanium dioxide hollow sphere [J]. Chin. J. Mater. Res., 2021, 35(2): 135
doi: 10.11901/1005.3093.2020.333
彭子童, 郜艳荣, 姚 楚 等. 铁/镱掺杂二氧化钛空心球的制备及其光催化性能 [J]. 材料研究学报, 2021, 35(2): 135
doi: 10.11901/1005.3093.2020.333
3 Schwitzgebel J, Ekerdt J G, Gerischer H, et al. Role of the oxygen molecule and of the photogenerated electron in TiO2-photocatalyzed air oxidation reactions [J]. J. Phys. Chem. C, 1995, 99(15):5633
4 Yu Y, Bao H B. Comparative research on solar photovoltaic market deployment policies [J]. Sci. Technol. Manag. Res., 2012, 32(15): 21
余 杨, 包海波. 太阳能光伏市场应用政策的国别比较研究 [J]. 科技管理研究, 2012, 32(15): 21
5 Matsumoto H, Hasuo M, Kono S, et al. Revived interest on yellow-exciton series in Cu2O-an experimental aspect [J]. Solid State Commun, 1996, 97(2): 125
6 Ma H M, Zhu Z L. Status and prospect of heterogeneous photocatalysis technology of semiconductor [J]. Environ. Prot. Sci., 2006, (01): 28
马红梅, 朱志良. 半导体多相光催化技术研究现状及发展趋势 [J]. 环境保护科学, 2006, (01): 28
7 Wang H J, Li Z. Heterogenous photocatalytic oxidation technology for semiconductors [J]. Modern Chemical Industry, 2002 (2): 56
王红娟, 李 忠. 半导体多相光催化氧化技术 [J]. 现代化工, 2002, (2): 56
8 Wei M Z, Huo J Z, Lun N, et al. A novel semiconductor photocatalyst—nano cuprous oxide [J]. Materials Reports, 2007, (6): 130
魏明真, 霍建振, 伦 宁 等. 一种新型的半导体光催化剂——纳米氧化亚铜 [J]. 材料导报, 2007, (6): 130
9 Long D, Zhou J L, Shi H M, et al. Research progress on the improved performance of cuprous oxide photocatalyst and its enhancement mechanism [J]. Chem. Ind. Eng. Prog., 2019, 38(6):2756
龙 丹, 周俊伶, 时洪民 等. 氧化亚铜光催化剂性能提升及增强机制的研究进展 [J]. 化工进展, 2019, 38(6): 2756
10 Jongh P, Vanmaekelbergh D, Kelly J J. Cu2O: a catalyst for the photochemical decomposition of water? [J]. Chem Commun, 1999, 0(12): 1069
11 Toe C Y, Zheng P Z, Wu H, et al. Photocorrosion of cuprous oxide in hydrogen production: rationalising self‐oxidation or self‐reduction [J]. Angew. Chem., 2018, 130(41): 13801
12 Karthikeyan S, Kumar S, Durndell L, et al. Size-dependent visible light photocatalytic performance of Cu2O nanocubes [J]. C. & Chem, 2018, 10(16): 3554
13 Wu C. Pd-Cu2O and Ag-Cu2O hybrid concave nanomaterials for an effective synergistic catalyst [J]. Angew. Chem, 2013, 52(42):9023
14 Siripala W, Ivanovskaya A, Jaramillo T F, et al. A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis [J]. Sol. Energy Mater Sol.Cells, 2003, 77(3): 229
15 Xie L, Wang P, Li Z F, et al. Hydrothermal synthesis and photocatalytic activity of CuO/ZnO composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33(10): 728
doi: 10.11901/1005.3093.2019.146
谢 亮, 王 平, 李之锋 等. CuO/ZnO复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33(10): 728
16 Wu Z, Cheung G, Wang J. Wavelength dependent photochemical charge transfer at the Cu2O-BiVO4 particle interface-evidence for tandem excitation [J]. Chem. Commun, 2018, 54: 9023
17 Guangliang C, Chuanhai X, Pinghua Z, et al. In situ electrodeposition of a Cu2O/SnO2 periodical heterostructure film for photosensor applications [J]. Phys. chem. chem. phys, 2016, 18(16): 10918
doi: 10.1039/c6cp00772d pmid: 27040464
18 Song J, Rodenbough P, Xu W. Reduction of nano Cu2O: crystallite-size dependent and the effect of nano-ceria support [J]. J Phys Chem C, 2015, 119(31): 17667
19 Wang B, An W, Liu L, et al. Novel Cu2S quantum dots coupled flower-like BiOBr for efficient photocatalytic hydrogen production under visible light [J]. Rsc Adv, 2015, 5(5): 3224
20 Wang L, Zhao F, Han Q, et al. Spontaneous formation of Cu2O-g-C3N4 core-shell nanowires for photocurrent and humidity responses [J]. Nanoscale, 2015, 7(21): 9694
21 Qin Y L, Yang Y, Zhao P Y, et al. Microstructures and photocatalytic properties of BiOCl-RGO nanocomposites prepared by two-step hydrothermal method [J]. Chin. J. Mater. Res., 2020, 34(02): 92
秦艳利, 杨 艳, 赵鹏羽 等. 两步水热法制备BiOCl-RGO纳米复合材料及其光催化性能 [J]. 材料研究学报, 2020, 34(02): 92
22 Huang Z J. Frabication of layered double hydroxides (LDHs) composites and their photocatalytic properties study [D]. Guangzhou: South China University of Technology, 2014
黄柱坚. 层状双氢氧化物(LDHs)复合材料的构建及光催化性能研究 [D]. 广州: 华南理工大学, 2014
23 Kulamani P, Minarva S, Lagnamayee M. Incorporation of Fe3+ into Mg/Al layered double hydroxide framework: effects on textural properties and photocatalytic activity for H2 generation [J]. J. Mater. Chem. A, 2012, 22(15):7350
24 Zhi Y, Li Y, Zhang Q, et al. ZnO nanoparticles immobilized on flaky layered double hydroxides as photocatalysts with enhanced adsorptivity for removal of acid red G [J]. Langmuir, 2010, 26(19):15546
doi: 10.1021/la1019313 pmid: 20825202
[1] WU Qianfang, HE Qun, CHANG Bing, QUAN Yuxin, HU Jingwen, LI Saisai, CAO Yingnan. Preparation and Neutron Shielding Properties of Fiberglass Based Thermal Insulating Porous Ceramics[J]. 材料研究学报, 2024, 38(6): 471-480.
[2] WANG Jun, WANG Xuanli, LIU Shuang, SONG Rui, SONG Xiwen. Effect of Mn Doping on Microstructure and Thermal Conductivity of (Y0.4Er0.6)3Al5O12 Ceramics Material for Thermal Barrier Coating[J]. 材料研究学报, 2024, 38(6): 463-470.
[3] WANG Wei, CHANG Wenjuan, LV Fanfan, XIE Zelei, YU Chengcheng. Preparation and Tribological Properties of Fluorinated Boron Nitride Nanosheets Water-based Additive[J]. 材料研究学报, 2024, 38(6): 410-422.
[4] TAN Yiling, LI Shichun, SUN Jie. Preparation of Metal-organic Framework Porous Glass agSALEM-2[J]. 材料研究学报, 2024, 38(5): 373-378.
[5] XU Hui, ZHANG Peiyuan, XU Nana, LIU Tao, ZHANG Xiaoshan, WANG Bing, WANG Yingde. Mechanical Property and Thermal Insulation Performance of SiO2/ZrO2 Nanofiber Membranes with High Thermal Stability[J]. 材料研究学报, 2024, 38(5): 365-372.
[6] WANG Yan, ZHANG Hao, CHANG Na, WANG Haitao. Preparation of Acid-alkali Modified Coal Fly Ash Adsorbent and Its Removal Performance on Dyes[J]. 材料研究学报, 2024, 38(5): 379-389.
[7] LI Jing, XU Yingchao, FAN Haoshuang, LU Yi, LI Li, ZHANG Xianyu. Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor[J]. 材料研究学报, 2024, 38(4): 288-296.
[8] LIU Rui, ZHANG Dingdong, ZHANG Hui, REN Wencai, DU Jinhong. Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes[J]. 材料研究学报, 2024, 38(3): 168-176.
[9] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
[10] LI Bosen, LIAO Zhongxin, GAO Daqiang. Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2024, 38(1): 51-60.
[11] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[12] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[13] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
No Suggested Reading articles found!