|
|
Preparation and Degradation Performance of Composite Photocatalyst of Two-Dimensional Layered ZnNiAl-LDH/ Cuprous Oxide Particles |
GUO Zhinan1, ZHAO Qiang1,2( ), LI Shuying1,3, WANG Junli1,3, XU Lin1, SHANG Jianpeng1,2, GUO Yong1,2 |
1.School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China 2.Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Datong 037009, China 3.Shanxi Province Union laboratory of Clean Energy Materials, Shanxi Datong University, Datong 037009, China |
|
Cite this article:
GUO Zhinan, ZHAO Qiang, LI Shuying, WANG Junli, XU Lin, SHANG Jianpeng, GUO Yong. Preparation and Degradation Performance of Composite Photocatalyst of Two-Dimensional Layered ZnNiAl-LDH/ Cuprous Oxide Particles. Chinese Journal of Materials Research, 2024, 38(6): 423-429.
|
Abstract A highly active and stable visible light photocatalyst of composite ZnNiAl-LDH/Cu2O was successfully prepared by using co-precipitation method to depositing two-dimensional layered ZnNiAl-ZnNiAl-LDH on Cu2O particles. The photocatalytic activity of the prepared composite catalyst was evaluated by the degradation of tetracycline (TC) under visible light. It is found that the developed ZnNiAl-LDH/Cu2O exhibited higher activity than the pure Cu2O, while the ZnNiAl-LDH/Cu2O photocatalyst doped with 7% of ZnNiAl-LDH exhibited the highest photodegradation activity, by which 89.6% of TC was decomposed within 50 minutes. The ZnNiAl-LDH/Cu2O photocatalyst present considerably high photocatalytic degradation activities on TC. The high photodegradation efficiency of 7%ZnNiAl-LDH/Cu2O could be ascribed to the efficient interfacial charge transfer at the composite and the synergistic effect between Cu2O and ZnNiAl-LDH, which resulted in the enhanced separation efficiency of photogenerated electron-hole pairs.
|
Received: 03 July 2023
|
|
Fund: National Natural Science Foundation of China(21908135);Natural Science Foundation of Shanxi Province(201901D111308,201901D211435,201801D221057);Overseas Students Science and Technology Activities Project Merit Funding of Shanxi Province(2019-20);PhD Research Startup Foundation of Shanxi Datong Univeisity(2018-B-01,2020-B-02);Postgraduate Education Innovation Project of Shanxi Datong University(21CX22,22CX17);Shanxi Province Innovation and Entrepreneurship Training Program for College Students(20220807,2016172) |
Corresponding Authors:
ZHAO Qiang, Tel: 15934234565, E-mail: zhaoqiangtyla@126.com
|
1 |
Zheng W, Can L, Kazunari D. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting [J]. Chem. Soc. Rev, 2018, 48(7): 2109
|
2 |
Peng Z T, Gao Y R, Yao C, et al. Preparation and photocatalytic activity of Fe/Yb Co-doped titanium dioxide hollow sphere [J]. Chin. J. Mater. Res., 2021, 35(2): 135
doi: 10.11901/1005.3093.2020.333
|
|
彭子童, 郜艳荣, 姚 楚 等. 铁/镱掺杂二氧化钛空心球的制备及其光催化性能 [J]. 材料研究学报, 2021, 35(2): 135
doi: 10.11901/1005.3093.2020.333
|
3 |
Schwitzgebel J, Ekerdt J G, Gerischer H, et al. Role of the oxygen molecule and of the photogenerated electron in TiO2-photocatalyzed air oxidation reactions [J]. J. Phys. Chem. C, 1995, 99(15):5633
|
4 |
Yu Y, Bao H B. Comparative research on solar photovoltaic market deployment policies [J]. Sci. Technol. Manag. Res., 2012, 32(15): 21
|
|
余 杨, 包海波. 太阳能光伏市场应用政策的国别比较研究 [J]. 科技管理研究, 2012, 32(15): 21
|
5 |
Matsumoto H, Hasuo M, Kono S, et al. Revived interest on yellow-exciton series in Cu2O-an experimental aspect [J]. Solid State Commun, 1996, 97(2): 125
|
6 |
Ma H M, Zhu Z L. Status and prospect of heterogeneous photocatalysis technology of semiconductor [J]. Environ. Prot. Sci., 2006, (01): 28
|
|
马红梅, 朱志良. 半导体多相光催化技术研究现状及发展趋势 [J]. 环境保护科学, 2006, (01): 28
|
7 |
Wang H J, Li Z. Heterogenous photocatalytic oxidation technology for semiconductors [J]. Modern Chemical Industry, 2002 (2): 56
|
|
王红娟, 李 忠. 半导体多相光催化氧化技术 [J]. 现代化工, 2002, (2): 56
|
8 |
Wei M Z, Huo J Z, Lun N, et al. A novel semiconductor photocatalyst—nano cuprous oxide [J]. Materials Reports, 2007, (6): 130
|
|
魏明真, 霍建振, 伦 宁 等. 一种新型的半导体光催化剂——纳米氧化亚铜 [J]. 材料导报, 2007, (6): 130
|
9 |
Long D, Zhou J L, Shi H M, et al. Research progress on the improved performance of cuprous oxide photocatalyst and its enhancement mechanism [J]. Chem. Ind. Eng. Prog., 2019, 38(6):2756
|
|
龙 丹, 周俊伶, 时洪民 等. 氧化亚铜光催化剂性能提升及增强机制的研究进展 [J]. 化工进展, 2019, 38(6): 2756
|
10 |
Jongh P, Vanmaekelbergh D, Kelly J J. Cu2O: a catalyst for the photochemical decomposition of water? [J]. Chem Commun, 1999, 0(12): 1069
|
11 |
Toe C Y, Zheng P Z, Wu H, et al. Photocorrosion of cuprous oxide in hydrogen production: rationalising self‐oxidation or self‐reduction [J]. Angew. Chem., 2018, 130(41): 13801
|
12 |
Karthikeyan S, Kumar S, Durndell L, et al. Size-dependent visible light photocatalytic performance of Cu2O nanocubes [J]. C. & Chem, 2018, 10(16): 3554
|
13 |
Wu C. Pd-Cu2O and Ag-Cu2O hybrid concave nanomaterials for an effective synergistic catalyst [J]. Angew. Chem, 2013, 52(42):9023
|
14 |
Siripala W, Ivanovskaya A, Jaramillo T F, et al. A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis [J]. Sol. Energy Mater Sol.Cells, 2003, 77(3): 229
|
15 |
Xie L, Wang P, Li Z F, et al. Hydrothermal synthesis and photocatalytic activity of CuO/ZnO composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33(10): 728
doi: 10.11901/1005.3093.2019.146
|
|
谢 亮, 王 平, 李之锋 等. CuO/ZnO复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33(10): 728
|
16 |
Wu Z, Cheung G, Wang J. Wavelength dependent photochemical charge transfer at the Cu2O-BiVO4 particle interface-evidence for tandem excitation [J]. Chem. Commun, 2018, 54: 9023
|
17 |
Guangliang C, Chuanhai X, Pinghua Z, et al. In situ electrodeposition of a Cu2O/SnO2 periodical heterostructure film for photosensor applications [J]. Phys. chem. chem. phys, 2016, 18(16): 10918
doi: 10.1039/c6cp00772d
pmid: 27040464
|
18 |
Song J, Rodenbough P, Xu W. Reduction of nano Cu2O: crystallite-size dependent and the effect of nano-ceria support [J]. J Phys Chem C, 2015, 119(31): 17667
|
19 |
Wang B, An W, Liu L, et al. Novel Cu2S quantum dots coupled flower-like BiOBr for efficient photocatalytic hydrogen production under visible light [J]. Rsc Adv, 2015, 5(5): 3224
|
20 |
Wang L, Zhao F, Han Q, et al. Spontaneous formation of Cu2O-g-C3N4 core-shell nanowires for photocurrent and humidity responses [J]. Nanoscale, 2015, 7(21): 9694
|
21 |
Qin Y L, Yang Y, Zhao P Y, et al. Microstructures and photocatalytic properties of BiOCl-RGO nanocomposites prepared by two-step hydrothermal method [J]. Chin. J. Mater. Res., 2020, 34(02): 92
|
|
秦艳利, 杨 艳, 赵鹏羽 等. 两步水热法制备BiOCl-RGO纳米复合材料及其光催化性能 [J]. 材料研究学报, 2020, 34(02): 92
|
22 |
Huang Z J. Frabication of layered double hydroxides (LDHs) composites and their photocatalytic properties study [D]. Guangzhou: South China University of Technology, 2014
|
|
黄柱坚. 层状双氢氧化物(LDHs)复合材料的构建及光催化性能研究 [D]. 广州: 华南理工大学, 2014
|
23 |
Kulamani P, Minarva S, Lagnamayee M. Incorporation of Fe3+ into Mg/Al layered double hydroxide framework: effects on textural properties and photocatalytic activity for H2 generation [J]. J. Mater. Chem. A, 2012, 22(15):7350
|
24 |
Zhi Y, Li Y, Zhang Q, et al. ZnO nanoparticles immobilized on flaky layered double hydroxides as photocatalysts with enhanced adsorptivity for removal of acid red G [J]. Langmuir, 2010, 26(19):15546
doi: 10.1021/la1019313
pmid: 20825202
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|