Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (6): 463-473    DOI: 10.11901/1005.3093.2024.290
ARTICLES Current Issue | Archive | Adv Search |
Methylene Blue Adsorption Performance of Magnetic Zeolite Prepared from Oil Shale Ash
DUAN Yu1, WANG Qian1(), LIU Hongchen1, CHE Yuanjun1, SHI Lei1, BAI Huijuan2()
1.School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, China
2.CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Cite this article: 

DUAN Yu, WANG Qian, LIU Hongchen, CHE Yuanjun, SHI Lei, BAI Huijuan. Methylene Blue Adsorption Performance of Magnetic Zeolite Prepared from Oil Shale Ash. Chinese Journal of Materials Research, 2025, 39(6): 463-473.

Download:  HTML  PDF(1261KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fe3O4@NaX magnetic zeolite was prepared via alkaline fusion hydrothermal method with Fe3O4 particles and Beipiao oil shale ash as raw material, aiming to making magnetic absorbent substance for absorbing methylene blue (MB) from waste water. The adsorption performance of the magnetic zeolite for MB were studied in various processing conditions, and the adsorption mechanism was revealed. The results show that the removal efficiency and equilibrium adsorption capacity of 2.0% Fe3O4@NaX (mass fraction) zeolite for MB were 96.98% and 45.19 mg/g, respectively, in the following adsorption conditions: zeolite dosage of 1 g/L, initial pH of 5.7 of the solution, initial MB concentration of 50 mg/L, adsorption temperature of 25 °C and adsorption time of 60 min. The magnetic zeolite can be separated rapidly from dye solution by an applied external magnetic field, indicating its excellent recyclability. The MB adsorption on the zeolite is a spontaneous and exothermic process of entropy reduction, which follows the pseudo-second-order kinetics and Langmuir isotherm models. The electrostatic attraction, hydrogen bonds and pore diffusion are the main driving forces of the adsorption process.

Key words:  synthesizing and processing technics for materials      magnetic zeolite      alkaline fusion hydrothermal method      adsorption      oil shale ash      methylene blue     
Received:  27 June 2024     
ZTFLH:  TQ09  
Fund: National Natural Science Foundation of China(22008187);National Natural Science Foundation of China(22208256);National Natural Science Foundation of China(22308269)
Corresponding Authors:  WANG Qian, Tel: 13263280805, E-mail: shangjinzhe@163.com;
BAI Huijuan, Tel: 18811036008, E-mail: huijuanbai@ipe.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.290     OR     https://www.cjmr.org/EN/Y2025/V39/I6/463

SiO2Al2O3CaOFe2O3K2OMgOSO3Bal.
60.0814.389.135.083.663.222.092.35
Table 1  Main chemical composition of BPA (mass fraction, %)
Fig.1  XRD pattern of BPA
Fig.2  XRD pattern (a) and FTIR spectrum (b) of NaX zeolite
Fig.3  XRD patterns of Fe3O4@NaX zeolites with different contents of Fe3O4 (mass fraction)
Fig.4  SEM images of (a, b) NaX and (c, d) Fe3O4@NaX zeolites
Fig.5  TEM analysis results of Fe3O4@NaX zeolite. (a, b) TEM images; (c, d) selected area and corresponding element distributions
Fig.6  MB removal efficiency of Fe3O4@NaX zeolites with different contents of Fe3O4
Fig.7  Magnetic hysteresis loop of 2.0% Fe3O4@NaX zeolite
Fig.8  N2 adsorption-desorption isotherms and pore size distribution curve (inset) of the Fe3O4@NaX zeolite
Fig.9  Effects of adsorption conditions on the adsorption performance of the zeolite. (a) effect of adsorption time, (b) effect of zeolite dosage, (c) effect of the initial concentration of MB, (d) effect of MB solution temperature
Fig.10  Effects of different salts and salinities on the MB adsorption performance of the zeolite
AdsorbentsTime / minDosage / g·L-1Initial concentration / mg·L-1pH valueTemperature / oCAdsorption capacity / mg·g-1Ref.
Fe3O4@NaX60150Natural2545.19This work
WO330.0515NaturalNatural1.64[25]
Zeolite HY-Fe3O4 from Zeolite HY and Fe3O4401.18610.23953.93.24[26]
Natural zeolite from Sigmae-Aldrich1200.620Natural259.19[27]
A mixture of zeolite A and P synthesized from electrolytic manganese residue200620064033.57[28]
Zeo-FPT400.5108250.438[29]
Magnetic graphene oxide2400.1545925306.5[30]
Fe3O4@UIO-66-NH2900.00449Natural9.53[31]
Table 2  MB adsorption capacities of different adsorbents
ModelsTemperature25 oC35 oC45 oC55 oC65 oC
Experimentqe,exp / mg·g-147.8045.0752.3852.3850.94
Pseudo-first-orderqe,cal / mg·g-15.644.684.023.804.41
k1 / min-10.01150.00940.00850.00420.0041
R20.61080.45930.24640.30320.2157
Pseudo-second-orderqe,cal / mg·g-146.3243.4250.6349.8547.78
k2 / g·mg-1·min-10.02370.03390.05990.12420.6337
R20.99990.99990.99990.99990.9997
Intraparticle diffusionc / mg·g-139.5037.9845.7647.6445.48
kp / mg·g-1·min-1/20.01150.00940.00850.00420.0041
R20.60790.47970.41300.48760.4487
Table 3  Kinetics parameters for MB adsorption on the Fe3O4@NaX zeolite
LangmuirFreundlichDubinin-Radushkevich

qm

/ mg·g-1

KL

/ L·mg-1

R2

KF

/ mg·g-1

nR2

qm

/ mg·g-1

KDR

/ mol2·J-2

R2
57.33941.69980.999734.14611.94090.949542.67025.32×10-80.9734
Table 4  Isotherms parameters for MB adsorption on the Fe3O4@NaX zeolite
Temperature / KKcΔG / kJ·mol-1ΔH / kJ·mol-1ΔS / J·mol-1·K-1
298.1532.1413-8.6019-16.3922-26.1432
308.1526.4178-8.3880
318.1524.4721-8.2136
328.1516.9428-7.7205
338.1512.8492-7.1782
Table 5  Thermodynamic parameters for MB adsorption on the Fe3O4@NaX zeolite
Fig.11  XPS spectra of Fe3O4@NaX zeolite before and after adsorption: (a) survey spectra, (b) Na 1s, (c) Si 2p, (d) C 1s
Fig.12  FTIR spectra of Fe3O4@NaX zeolite before and after adsorption
Fig.13  Mechanism of adsorption of MB by Fe3O4@NaX molecular sieve
Fig.14  Reusability (a) and XRD patterns before and after elution (b) of Fe3O4@NaX zeolite
1 Liu Z J, Ma H T, Wang Z, et al. Experimental study on the thermophysical properties of Jimsar oil shale[J]. Oil Shale, 2023, 40(3): 194
2 Bai S X, Chu M, Zhou L M, et al. Modified oil shale ash and oil shale ash zeolite for the removal of Cd2+ ion from aqueous solutions[J]. Environ. Technol., 2019, 40(11): 1485
3 Hamadi A, Nabih K. Alkali activation of oil shale ash based ceramics[J]. E-J. Chem., 2012, 9(3): 1373
4 Ilman H S N M, Panatarani C, Faizal F, et al. Synthesis of mesoporous silica SBA-15 from geothermal sludge[J]. Materialia, 2023, 27: 101637
5 Shawabkeh R, Al-Harahsheh A, Hami M, et al. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater[J]. Fuel, 2004, 83(7-8): 981
6 Bao W W, Zou H F, Gan S C, et al. Adsorption of heavy metal ions from aqueous solutions by zeolite based on oil shale ash: kinetic and equilibrium studies[J]. Chem. Res. Chin. Univ., 2013, 29(1): 126
7 Piri F, Mollahosseini A, Khadir A, et al. Enhanced adsorption of dyes on microwave-assisted synthesized magnetic zeolite-hydroxyapatite nanocomposite[J]. J. Environ. Chem. Eng., 2019, 7(5): 103338
8 Liu H Q, Wu Y J, Yang Y, et al. Adsorption and recovery of low concentration coal-bed methane by zeolite ZSM-5[J]. CIESC J., 2016, 67(5): 1931
doi: 10.11949/j.issn.0438-1157.20151684
刘海庆, 吴一江, 杨 颖 等. 沸石ZSM-5吸附回收低浓度煤层气中CH4 [J]. 化工学报, 2016, 67(5): 1931
doi: 10.11949/j.issn.0438-1157.20151684
9 Tehubijuluw H, Subagyo R, Yulita M F, et al. Utilization of red mud waste into mesoporous ZSM-5 for methylene blue adsorption-desorption studies[J]. Environ. Sci. Pollut. Res., 2021, 28(28): 37354
10 Cheng Y, Xu L J, Jiang Z, et al. Feasible low-cost conversion of red mud into magnetically separated and recycled hybrid SrFe12O19@NaP1 zeolite as a novel wastewater adsorbent[J]. Chem. Eng. J., 2021, 417: 128090
11 Liu H B, Peng S C, Shu L, et al. Magnetic zeolite NaA: synthesis, characterization based on metakaolin and its application for the removal of Cu2+, Pb2+ [J]. Chemosphere, 2013, 91(11): 1539
doi: 10.1016/j.chemosphere.2012.12.038 pmid: 23340053
12 Shi L, Wang Q, Zhao X S, et al. The methyl blue adsorption performance and mechanism of NaX zeolite synthesized from Huadian oil shale ash[J]. J. Taiwan Inst. Chem. Eng., 2023, 147: 104904
13 Rajabi S K, Sohrabnezhad S. Synthesis and characterization of magnetic core with two shells: mordenite zeolite and CuO to form Fe3O4@MOR@CuO core-shell: as a visible light driven photocatalyst[J]. Micropor. Mesopor. Mater., 2017, 242: 136
14 Zeidan H, Can M, Marti M E. Synthesis, characterization, and use of an amine-functionalized mesoporous silica SBA-15 for the removal of Congo Red from aqueous media[J]. Res. Chem. Intermed., 2023, 49(1): 221
15 Jia W L, Wang S Y, Deng Y Y, et al. Characterization and application of lamellar zeolite-X prepared from kaolin[J]. Micro Nano Lett., 2024, 19(1): e12182
16 Zhang M S, Wang S Y, Hu Z, et al. Synthesis and characterization of zeolite X obtained from coal gangue for adsorption of Cu2+ [J]. Sci. Adv. Mater., 2021, 13(8): 1512
17 Yan K Z, Zhang J Y, Liu D D, et al. Feasible synthesis of magnetic zeolite from red mud and coal gangue: preparation, transformation and application[J]. Powder Technol., 2023, 423: 118495
18 Zhang T, Peng X L, Li J, et al. Structural, magnetic and electromagnetic properties of SrFe12O19 ferrite with particles aligned in a magnetic field[J]. J. Alloy. Compd., 2017, 690: 936
19 Singh P, Sharma K, Hasija V, et al. Systematic review on applicability of magnetic iron oxides-integrated photocatalysts for degradation of organic pollutants in water[J]. Mater. Today Chem., 2019, 14: 100186
20 Cao J, Sun Q, Wang P, et al. Synthesize and characterize of Fe3O4/zeolite 4A magnetic nanocomposite[J]. J. Dispersion Sci. Technol., 2022, 43(4): 517
21 Yan J S, Li Y, Li H R, et al. Effective removal of ruthenium (III) ions from wastewater by amidoxime modified zeolite X[J]. Microchem. J., 2019, 145: 287
22 Awala H, Leite E, Saint-Marcel L, et al. Properties of methylene blue in the presence of zeolite nanoparticles[J]. New J. Chem., 2016, 40(5): 4277
23 Belachew N, Hinsene H. Preparation of zeolite 4A for adsorptive removal of methylene blue: optimization, kinetics, isotherm, and mechanism study[J]. Silicon, 2022, 14(4): 1629
doi: 10.1007/s12633-020-00938-9
24 Ioannou Z, Karasavvidis C, Dimirkou A, et al. Adsorption of methylene blue and methyl red dyes from aqueous solutions onto modified zeolites[J]. Water Sci. Technol., 2013, 67(5): 1129
doi: 10.2166/wst.2013.672 pmid: 23416607
25 Dadashi R, Bahram M, Farhadi K, et al. Photodecoration of tungsten oxide nanoparticles onto eggshell as an ultra-fast adsorbent for removal of MB dye pollutant[J]. Sci. Rep., 2024, 14(1): 14478
doi: 10.1038/s41598-024-65573-5 pmid: 38914725
26 Majid Z, Abdulrazak A A, Noori W A H. Modification of zeolite by magnetic nanoparticles for organic dye removal[J]. Arab. J. Sci. Eng., 2019, 44(6): 5457
27 Hor K Y, Chee J M C, Chong M N, et al. Evaluation of physicochemical methods in enhancing the adsorption performance of natural zeolite as low-cost adsorbent of methylene blue dye from wastewater[J]. J. Clean. Prod., 2016, 118: 197
28 Li C X, Zhong H, Wang S, et al. Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue[J]. J. Ind. Eng. Chem., 2015, 23: 344
29 Alhogbi B G, Al Balawi G S. An investigation of a natural biosorbent for removing methylene blue dye from aqueous solution[J]. Molecules, 2023, 28(6): 2785
30 Guo Y F, Deng J, Zhu J Y, et al. Removal of mercury(II) and methylene blue from a wastewater environment with magnetic graphene oxide: adsorption kinetics, isotherms and mechanism[J]. RSC Adv., 2016, 6(86): 82523
31 Zhang Y M, Dai T L, Zhang F, et al. Fe3O4@UiO-66-NH2 core-shell nanohybrid as stable heterogeneous catalyst for Knoevenagel condensation[J]. Chin. J. Catal., 2016, 37(12): 2106
张艳梅, 戴田霖, 张 帆 等. 核壳结构Fe3O4@UiO-66-NH2磁性纳米复合材料的合成及其催化Knoevenagel缩合反应性能[J]. 催化学报, 2016, 37(12): 2106
doi: 10.1016/S1872-2067(16)62562-7
32 Cao J S, Lin J X, Fang F, et al. A new absorbent by modifying walnut shell for the removal of anionic dye: kinetic and thermodynamic studies[J]. Bioresour. Technol., 2014, 163: 199
33 Nezamzadeh-Ejhieh A, Karimi-Shamsabadi M. Comparison of photocatalytic efficiency of supported CuO onto micro and nano particles of zeolite X in photodecolorization of methylene blue and methyl orange aqueous mixture[J]. Appl. Catal., 2014, 477: 83
34 Bai S X, Zhou L M, Chang Z B, et al. Synthesis of Na-X zeolite from Longkou oil shale ash by alkaline fusion hydrothermal method[J]. Carbon Resour. Convers., 2018, 1(3): 245
[1] TAN Yiling, LI Shichun, SUN Jie. Preparation of Metal-organic Framework Porous Glass agSALEM-2[J]. 材料研究学报, 2024, 38(5): 373-378.
[2] WANG Yan, ZHANG Hao, CHANG Na, WANG Haitao. Preparation of Acid-alkali Modified Coal Fly Ash Adsorbent and Its Removal Performance on Dyes[J]. 材料研究学报, 2024, 38(5): 379-389.
[3] ZHAO Yong, LIU Tengyuan, JIA Chunni, YANG Zhendan, CHEN Xiangjun, WANG Pei, LI Dianzhong. Crystal Plasticity Study on the Non-uniformity of Strain on the Cross-section of Cold Drawn Steel Wire[J]. 材料研究学报, 2024, 38(2): 81-91.
[4] WENG Xin, LI Qiqi, YANG Guifang, LV Yuancai, LIU Yifan, LIU Minghua. Preparation of Adsorbent Fe-loaded Cellulose/Tannin and Its Adsorption Characteristics for Fluoroquinolones Antibiotics[J]. 材料研究学报, 2024, 38(2): 92-104.
[5] HUO Zhaohui, WU Haojie, HE Yongqi, ZHENG Mingxiu, ZHAN Manzi, ZHANG Qitong, LIAO Xiaolin. Polyporphyrin/MXene-based Self-supporting Composite Films and Photocatalytic Degradation of Pollutants[J]. 材料研究学报, 2024, 38(12): 950-960.
[6] YU Moxin, SUN Yuhang, SHI Wenxu, ZHANG Chen, WANG Xiaoting. Preparation of Fe-doped Biochar and Its Adsorption Performance for Ni2+ and Co2+ Metal Ions[J]. 材料研究学报, 2024, 38(11): 849-860.
[7] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[8] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[9] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[10] YANG Qin, WANG Zhen, FANG Chunjuan, WANG Ruodi, GAO Dahang. Preparation and Adsorption Properties of CMC/AA/CB[8]/BET Gel with Controllable Mechanical Properties[J]. 材料研究学报, 2022, 36(8): 628-634.
[11] YAN Fuzhao, LI Jing, XIONG Liangyin, LIU Shi. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. 材料研究学报, 2022, 36(6): 461-470.
[12] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[13] YU Moxin, KUAI Le, WANG Liang, ZHANG Chen, WANG Xiaoting, CHEN Qihou. Synthesis of N-Doped Hierarchical Porous Carbon and its Adsorption Capacity for Acid Orange 74[J]. 材料研究学报, 2021, 35(9): 667-674.
[14] QUE Aizhen, ZHU Taoyu, ZHENG Yuying. Preparation of Hollow Magnetic Graphene Oxide and Its Adsorption Performance for Methylene Blue[J]. 材料研究学报, 2021, 35(7): 517-525.
[15] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
No Suggested Reading articles found!