Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (7): 529-536    DOI: 10.11901/1005.3093.2023.352
ARTICLES Current Issue | Archive | Adv Search |
Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors
YUAN Xinzhong1, WANG Cunjing2(), YAO Peng2, LI Qiong3, MA Zhihua2, LI Pengfa2
1.Medical college, Xinxiang University, Xinxiang 453003, China
2.School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, China
3.School of Pharmacy of Xinxiang University, Xinxiang University, Xinxiang 453003, China
Cite this article: 

YUAN Xinzhong, WANG Cunjing, YAO Peng, LI Qiong, MA Zhihua, LI Pengfa. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors. Chinese Journal of Materials Research, 2024, 38(7): 529-536.

Download:  HTML  PDF(10422KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

N and O co-doped carbon electrode materials were synthesized by pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8) at high temperature in air using a salt-sealing technique, aiming to solve the issue related with the low energy density of conventional carbon materials for supercapacitors. Compared with the conventional carbon materials prepared by direct pyrolysis of ZIF-8 in nitrogen atmosphere, the novel carbon materials prepared by this proposed technique have an open hollow structure with appropriate distribution of mesoporous and microporous, and higher specific surface area of 1589 m2·g-1. The co-doping of heteroatoms N and O can improve the wettability of the material, while the open hollow structure is conducive to the diffusion of the electrolyte ions from both internal and external surfaces to the interior of the electrode material. Therefore, more solvated ions are adsorbed and desorbed in the pores, and the effective specific surface area is increased for the electrode material, therewith, more active sites of heteroatoms N and O can participate in the redox reaction, introducing higher Faraday capacitance. As a matter of course, the symmetrical supercapacitor assembled with the novel electrode material shows an energy density of 11 Wh·kg-1 at power density of 250 W·kg-1.

Key words:  inorganic non-metallic materials      supercapacitors      salt-sealing technique      open hollow carbon materials     
Received:  18 July 2023     
ZTFLH:  O646  
Fund: National Natural Science Foundation of China(51902278);National Natural Science Foundation of China(51871190);National Natural Science Foundation of China(51901200)
Corresponding Authors:  WANG Cunjing, Tel: (0373)3682674,E-mail: wangcunjing@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.352     OR     https://www.cjmr.org/EN/Y2024/V38/I7/529

Fig.1  TG (a) and DSG (b) of ZIF-8 and the mixture of ZIF-8 and salt, XRD (c) and Roman pattern (d) of A-ZC and N-ZC
Fig.2  SEM images of ZIF-8 (a), IZC (b) and AZC (c), TEM (d) and HRTEM image of AZC (e), the element mapping (f~i) of C, N and O of AZC
Fig.3  XPS survey spectra of A-ZC and N-ZC (a), C1s and N1s spectra of A-ZC (b, c), N2 adsorption/desorption isotherms (d), and the DFT pore size distribution (e) of A-ZC and N-ZC
Fig.4  CV curves of A-ZC (a) and NZC at 10-100 mV·s-1 (b), GCD curves of A-ZC (c) and N-ZC (d) at different current densities, Specific capacitance at different current densities (e) and yquist plots (f) N of A-ZC and N-ZC
Fig.5  GCD curves at different current densities (a), specific capacitance at different current densities (b), Ragone plot (c) and cycling stability at 5 A·g-1 up to 20000 cycles (d) of the symmetrical supercapacitor
[1] Guo R N, Li T W, Wang D, et al. Research progress of MOF-derived nano-electrode materials for supercapacitors [J]. J. Synth. Crys., 2023, 52(11): 1922
郭容男, 李太文, 王 栋 等. 超级电容器用MOFs衍生纳米电极材料的研究进展 [J]. 人工晶体学报, 2023, 52(11): 1922
[2] Tian T, Lei S P, Yu T, et al. Research progress of carbon materials in flexible supercapacitors [J]. Chem. Indus. Eng. Prog., 2023, 42(2): 884
田 甜, 雷西萍, 于 婷 等. 碳材料在柔性超级电容器中的研究进展 [J]. 化工进展, 2023, 42(2): 884
[3] Song X L, Luo W J, Nan Y L. A review for synthesis and applications of carbon nanohorns [J]. Chin. J. Mater. Res., 2021, 35(6): 10
宋小龙, 骆伟静, 南艳丽. 碳纳米角的制备及其应用进展 [J]. 材料研究学报, 2021, 35(6): 10
[4] Zhang C X, Jiang Z Y, Dai Y M, et al. Preparation and supercapacitance of C-ZIF-8@AC composites electrode material [J]. Chin. J. Mater. Res., 2019(5): 9
张传香, 江中仪, 戴玉明 等. C-ZIF-8@AC复合电极材料的制备及超电容性能研究 [J]. 材料研究学报, 2019(5): 9
[5] Cao Z J, Li R Y, Xu P W, et al. Highly dispersed RuO2-biomass carbon composite made by immobilization of ruthenium and dissolution of coconut meat with octyl ammonium salicylate ionic liquid for high performance flexible supercapacitor [J]. J. Colloid Interface Sci., 2022, 606(1): 424
[6] Wang G, Lu Z L, Li Y, et al. Electroceramics for high-energy density capacitors: current status and future perspectives [J]. Chem. Rev., 2021, 121(10): 6124
[7] Wei L, Wang J K, Liu K G, et al. Nanocellulose/reduced graphene oxide composites for high performance supercapacitors [J]. Chin. J. Inorg. Chem., 2023, 39(3): 456
魏 良, 王健恺, 刘凯歌 等. 纳米纤维素/还原氧化石墨烯复合材料用于高性能超级电容器 [J]. 无机化学学报, 2023, 39(3): 456
[8] Yang L, Wu T T, Li H Q, et al. Preparation of nitrogen-doped carbon nanonets for high-performance supercapacitors [J]. Chin. J. Inorg. Chem., 2021, 37(6): 1017
杨 磊, 武婷婷, 李宏强 等. 用于高性能超级电容器的氮掺杂碳纳米网的制备 [J]. 无机化学学报. 2021, 37(6): 1017
[9] Liu H, Yang D H, Wang X Y, et al. Metal-organic framework-derived hollow carbon materials for electrochemical energy storage and oxygen reduction reaction [J]. Chin. J. Inorg. Chem., 2019, 35(11): 1921
刘 虎, 杨东辉, 王许云 等. 金属-有机框架衍生的中空碳材料及其在电化学能源存储与氧还原领域中的应用 [J]. 无机化学学报, 2019, 35(11): 192
[10] Sheng R, Tang T T, Tian M, et al. Research on heat-resistant phenolic resin-based activated carbon for supercapacitor electrodes [J]. Mater. Rep., 2023, 37(4): 25
盛 蕊, 唐婷婷, 田 敏 等. 耐热酚醛树脂基活性炭的制备及其超级电容器性能研究 [J]. 材料导报, 2023, 37(4): 25
[11] Singh G, Bahadur R, Ruban A M, et al. Synthesis of functionalized nanoporous biocarbons with high surface area for CO2 capture and supercapacitor applications [J]. Green Chem., 2021, 23(15): 5571
[12] Yang G J, Park S J. Conventional and microwave hydrothermal synthesis and application of functional materials: A review [J]. Materials, 2019, 12 (7): 1177
[13] Liu T, Zhang L, You W, et al. Core-shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor [J]. Small, 2018, 14(12): 1702407
[14] Qiu G F, Guo Y, Zhang Y X. Construction of N, O co-doped petal-like hierarchical porous carbon with an ultrahigh specific surface from waste bamboo for high-performance supercapacitors [J]. Ind. Eng. Chem. Res., 2022, 61(43): 16034
[15] Li Y P, Yang C H, Zheng H F, et al. High pyridine N-doped porous carbon derived from metal-organic frameworks for boosting potassium-ion storage [J]. J. Mater. Chem. A, 2018, 6(37): 17959
[16] Lu C, Wang D X, Zhao J J, et al. A continuous carbon nitride polyhedron assembly for high-performance flexible supercapacitors [J]. Adv. Funct. Mater. 2017, 27(8): 1606219
[17] Wang C J, Wu D P, Wang H J, et al. Nitrogen-doped two-dimensional porous carbon sheets derived from clover biomass for high performance supercapacitors [J]. J. Power Sources, 2017, 363(30): 375
[18] Liu J H, Li Z J, Wu S C, et al. Synthesis of biochar derived from jujun grass and the application in supercapacitors [J]. Chem. J. Chin. U., 2023, 44(4): 10
刘军辉, 李紫家, 吴树昌 等. 生物质巨菌草衍生炭的合成及在超级电容器中的应用 [J]. 高等学校化学学报, 2023, 44(4): 10
[19] Song X Q, Lei X P, Fan K, et al. Research progress of biomass derived carbon in supercapacitors [J]. Acta Mater. Compos. Sin., 2023, 40(3): 1328
宋晓琪, 雷西萍, 樊 凯 等. 基于生物质衍生炭在超级电容器中的研究进展 [J]. 复合材料学报, 2023, 40(3): 1328
[20] Li P H, Yang C, Wu C W, et al. Bio-based carbon materials for high-performance supercapacitors [J]. Nanomater., 2022, 12(17): 2931
[21] Wang C J, Yuan X Z, Guo G L, et al. Salt template tuning morphology and porosity of biomass-derived N-doped porous carbon with high redox-activation for efficient energy storage [J]. Colloid Surface A, 2022, 650: 129552
[22] Xiao X, Song H B, Lin S Z, et al. Scalable salt-templated synthesis of two-dimensional transition metal oxides [J]. Nat. Commun., 2016, 7: 11296
doi: 10.1038/ncomms11296 pmid: 27103200
[23] Zhao S, Lian J B, Zhang S, et al. Molten salt synthesis of submicron NiNb2O6 anode material with ultra-high rate performance for lithium-ion batteries [J]. Chem. Eng. J., 2023, 461(1): 141997
[24] Ma Z S, Zhang H Y, Yang Z Z, et al. Highly mesoporous carbons derived from biomass feedstocks templated with eutectic salt ZnCl2/KCl [J]. J. Mater. Chem. A, 2014, 2(45): 19324
[25] Wang C J, Wu D P, Wang H J, et al. Biomass derived nitrogen-doped hierarchical porous carbon sheets for supercapacitors with high performance [J]. J. Colloid Interface Sci., 2018, 523: 133
[26] Wang C J, Wu D P, Wang H J, et al. A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity [J]. J. Mater. Chem. A, 2018, 6(3): 1244
[27] Ren J C, Huang Y L, Zhu H, et al. Recent progress on MOF-derived carbon materials for energy storage [J]. Carbon Energy, 2020, 2(2): 176
[1] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
[2] WU Qianfang, HE Qun, CHANG Bing, QUAN Yuxin, HU Jingwen, LI Saisai, CAO Yingnan. Preparation and Neutron Shielding Properties of Fiberglass Based Thermal Insulating Porous Ceramics[J]. 材料研究学报, 2024, 38(6): 471-480.
[3] WANG Jun, WANG Xuanli, LIU Shuang, SONG Rui, SONG Xiwen. Effect of Mn Doping on Microstructure and Thermal Conductivity of (Y0.4Er0.6)3Al5O12 Ceramics Material for Thermal Barrier Coating[J]. 材料研究学报, 2024, 38(6): 463-470.
[4] GUO Zhinan, ZHAO Qiang, LI Shuying, WANG Junli, XU Lin, SHANG Jianpeng, GUO Yong. Preparation and Degradation Performance of Composite Photocatalyst of Two-Dimensional Layered ZnNiAl-LDH/ Cuprous Oxide Particles[J]. 材料研究学报, 2024, 38(6): 423-429.
[5] WANG Wei, CHANG Wenjuan, LV Fanfan, XIE Zelei, YU Chengcheng. Preparation and Tribological Properties of Fluorinated Boron Nitride Nanosheets Water-based Additive[J]. 材料研究学报, 2024, 38(6): 410-422.
[6] TAN Yiling, LI Shichun, SUN Jie. Preparation of Metal-organic Framework Porous Glass agSALEM-2[J]. 材料研究学报, 2024, 38(5): 373-378.
[7] XU Hui, ZHANG Peiyuan, XU Nana, LIU Tao, ZHANG Xiaoshan, WANG Bing, WANG Yingde. Mechanical Property and Thermal Insulation Performance of SiO2/ZrO2 Nanofiber Membranes with High Thermal Stability[J]. 材料研究学报, 2024, 38(5): 365-372.
[8] WANG Yan, ZHANG Hao, CHANG Na, WANG Haitao. Preparation of Acid-alkali Modified Coal Fly Ash Adsorbent and Its Removal Performance on Dyes[J]. 材料研究学报, 2024, 38(5): 379-389.
[9] LI Jing, XU Yingchao, FAN Haoshuang, LU Yi, LI Li, ZHANG Xianyu. Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor[J]. 材料研究学报, 2024, 38(4): 288-296.
[10] LIU Rui, ZHANG Dingdong, ZHANG Hui, REN Wencai, DU Jinhong. Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes[J]. 材料研究学报, 2024, 38(3): 168-176.
[11] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
[12] LI Bosen, LIAO Zhongxin, GAO Daqiang. Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2024, 38(1): 51-60.
[13] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[14] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[15] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
No Suggested Reading articles found!