|
|
Dielectric-, Ferroelectric- and Piezoelectric-property of Lu3+ Doped 0.67BiFeO3-0.33BaTiO3 Lead-free Piezoelectric Ceramics |
CHEN Shiyu, LI Wei, KUANG Haiyan, GAO Shaowei, PANG Dongfang( ) |
College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou 341000, China |
|
Cite this article:
CHEN Shiyu, LI Wei, KUANG Haiyan, GAO Shaowei, PANG Dongfang. Dielectric-, Ferroelectric- and Piezoelectric-property of Lu3+ Doped 0.67BiFeO3-0.33BaTiO3 Lead-free Piezoelectric Ceramics. Chinese Journal of Materials Research, 2025, 39(4): 272-280.
|
Abstract Rare earth ion modification has been widely used to improve the electrical properties of ferro/piezoelectric materials. In this work, Lu3+ doped lead-free ferroelectric ceramics of 0.67BiFe1 - x Lu x O3-0.33BaTiO3 (BF-BT-xLu, x = 0, 0.005, 0.008, 0.010, 0.012, 0.015, 0.020, 0.030) were prepared by using a conventional high-temperature solid-state reaction method. The results of XRD powder diffraction showed that the introduction of Lu3+ ions did not cause significant change of the crystal structure for the Lu3+ doped lead-free ferroelectric ceramics, and of which all the components of ceramics are retained in the morphotropic phase boundary (MPB) region, where tetragonal and rhombohedral perovskite structures coexisted. Microscopic morphology analysis shows that all ceramics were well sintered and have high relative density. By analyzing and comparing the changes in iron ion valence and oxygen vacancies, it can be determined that the incorporation of appropriate amount of Lu3+ ions can effectively hinder the transformation of Fe3+ ions to Fe2+ ions, thereby reducing the leakage current in the BF-BT-xLu ceramics, therewith, improving its electrical performance. Pure BF-BT exhibits P-E hysteresis loops of typical ferroelectrics, with remnant polarization (Pr) = 26.47 μC/cm2, coercive field (Ec) = 30.45 kV/cm. After moderate Lu3+ modification, the ferroelectric properties of the BF-BT system were improved, with Pr = 28.66 μC/cm2, Ec = 28.12 kV/cm for the BF-BT-0.015Lu. By 80 kV/cm at room temperature, the electric field-strain S of BF-BT-0.01Lu is 0.328%, and the high-field piezoelectric coefficient d is 410 pm/V. The present study expands the application of rare earth ions in the field of ferroelectric materials and provides an example for further designing high-performance BF-BT lead-free ferroelectrics.
|
Received: 26 January 2024
|
|
Fund: National Natural Science Foundation of China(51702317);Natural Science Foundation of Jiangxi Provincial Science and Technology(20212BAB214019) |
Corresponding Authors:
PANG Dongfang, Tel: 18970786924, E-mail: 18970786924@163.com
|
1 |
Baptista F G, Filho J V. A new impedance measurement system for PZT-based structural health monitoring [J]. IEEE. T. Instrum. Meas., 2009, 58(10): 3602
|
2 |
Ali A I, Hassan M M, Goda M G, et al. Preparation, structural and dielectric properties of nanocomposite Al2O3/BaTiO3 for multilayer ceramic capacitors applications [J]. J. Mater. Res. Technol., 2022, 18: 2083
|
3 |
Jiang D H, Luo F, Liu Y S, et al. Ultrahigh strain in PZ-PT-BNT piezoelectric ceramic [J]. Ceram. Int., 2024, 502B: 3803
|
4 |
Wang T, Jin L, Tian Y, et al. Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage [J]. Mater. Lett., 2014, 137: 79
|
5 |
Yoo J, Oh D, Jeong Y, et al. Dielectric and piezoelectric characteristics of lead-free Bi0.5(Na0.84K0.16)0.5TiO3 ceramics substituted with Sr [J]. Mater. Lett., 2004, 58(29): 3831
|
6 |
Khan H A, Ullah S, Rehman G, et al. First principle study of band gap nature, spontaneous polarization, hyperfine field and electric field gradient of desirable multiferroic bismuth ferrite (BiFeO3) [J]. J. Phys. Chem. Solids., 2021, 148: 109737
|
7 |
Lin D, Zheng Q J, Li Y, et al. Microstructure, ferroelectric and piezoelectric properties of Bi0.5K0.5TiO3-modified BiFeO3-BaTiO3 lead-free ceramics with high curie temperature [J]. J. Eur. Ceram. Soc., 2013, 33(15): 3023
|
8 |
Wang L, Liang R, Zhou Z, et al. Thermally stable electrostrain in BiFeO3-BaTiO3-based high temperature lead-free piezoceramics [J]. Appl. Phys. Lett., 2019, 115(8): 082902
|
9 |
Zeng F F, Fan G F, Hao M M, et al. Conductive property of BiFeO3-BaTiO3 ferroelectric ceramics with high curie temperature [J]. J. Alloy. Compd., 2020, 831: 154853
|
10 |
Leontsev S O, Eitel R E. Progress in engineering high strain lead-free piezoelectric ceramics [J]. Sci. Technol. Adv. Mat., 2010, 11(4): 044302
|
11 |
Peng X Y, Tang Y C, Zhang B P, et al. High curie temperature BiFeO3-BaTiO3 lead-free piezoelectric ceramics: Ga3+ doping and enhanced insulation properties [J]. J. Appl. Phys., 2021, 130(14): 1
|
12 |
Xun B W, Song A Z, Yu J R, et al. Lead-free BiFeO3-BaTiO3 ceramics with high curie temperature: Fine compositional tuning across the phase boundary for high piezoelectric charge and strain coefficients [J]. ACS. Appl. Mater. Inter., 2021, 13(3): 4192
|
13 |
Xun B W, Tang Y C, Chen J Y, et al. Enhanced resistance in Bi(Fe1 - x Sc x )O3-0.3BaTiO3 lead-free piezoelectric ceramics: Facile analysis and reduction of oxygen vacancy [J]. J. Eur. Ceram. Soc., 2019, 39(14): 4085
|
14 |
Wang L, Liang R H, Zhou Z Y, et al. High electrostrain with high curie temperature in BiFeO3-BaTiO3-based ceramics [J]. Scr. Mater., 2019, 164: 62
|
15 |
Kuang H Y, He X, Oleg V, et al. Large electric field-induced strain and excellent photoluminescence properties of Pr-modified 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 lead-free ferroelectric ceramics [J]. Ceram. Int., 2023, 49(23): 39576
|
16 |
Li F. Ultrahigh piezoelectricity in ferroelectric ceramics by design [J]. Nat. Mater., 2018, 17(4): 349
doi: 10.1038/s41563-018-0034-4
pmid: 29555999
|
17 |
Chen Z T, Bu X Y, Ruan B X, et al. Simultaneously achieving high energy storage density and efficiency under low electric field in BiFeO3-based lead-free relaxor ferroelectric ceramics [J]. J. Eur. Ceram. Soc., 2020, 40(15): 5450
|
18 |
Li C Y, Zheng T, Wu J G. Competitive mechanism of temperature-dependent electrical properties in BiFeO3-BaTiO3 ferroelectrics controlled by domain evolution [J]. Acta. Mater., 2021, 206: 116601
|
19 |
Yue Y G, Xu X Z, Zhang M, et al. Grain size effects in Mn-modified 0.67BiFeO3-0.33BaTiO3 ceramics [J]. ACS. Appl. Mater. Inter., 2021, 13(48): 57548
|
20 |
Liu S, Feng W W, Li J H, et al. Realizing excellent energy storage performance and fatigue endurance in Sr0.7Sm0.2TiO3 modified 0.67BiFeO3-0.33BaTiO3 lead-free relaxor ceramics [J]. J. Eur. Ceram. Soc., 2022, 42(16): 7430
|
21 |
Zhang Y, Huang R X, Liang Z H, et al. Reduction inhibition of Fe3+ ions in mn-doped 0.7BiFeO3-0.3BaTiO3 ceramics by direct reaction sintering [J]. Ceram. Int., 2022, 48(18): 26696
|
22 |
Guo Y, Xiao P, Wen R, et al. Critical roles of Mn-ions in enhancing the insulation, piezoelectricity and multiferroicity of BiFeO3-based lead-free high temperature ceramics [J]. J. Mater. Chem. C, 2015, 3(22): 5811
|
23 |
He X, Chen C, Wang L, et al. Giant electromechanical response in layered ferroelectrics enabled by asymmetric ferroelastic switching [J]. Mate. Today., 2022, 58: 48
|
24 |
Kang F, Zhang L X, Huang B, et al. Enhanced electromechanical properties of SrTiO3-BiFeO3-BaTiO3 ceramics via relaxor behavior and phase boundary design [J]. J. Eur. Ceram. Soc., 2020, 40(4): 1198
|
25 |
Tang L, Zhou X F, Habib M, et al. Phase structure and electrical properties of BiFeO3-BaTiO3 ceramics near the morphotropic phase boundary [J]. Ceram. Int., 2023, 49(19): 31965
|
26 |
Zhao C, Li Z, Wu J. Role of trivalent acceptors and pentavalent donors in colossal permittivity of titanium dioxide ceramics [J]. J. Mater. Chem. C., 2019, 7(14): 4235
|
27 |
Zhou Q, Zhou C, Yang H, et al. Dielectric, ferroelectric, and piezoelectric properties of Bi(Ni1/2Ti1/2)O3-modified BiFeO3- BaTiO3 Ceramics with high curie temperature [J]. J. Am. Ceram. Soc., 2012, 95(12): 3889
|
28 |
Li Q J, Ji S S, Wang D D, et al. Simultaneously enhanced energy storage density and efficiency in novel BiFeO3-based lead-free ceramic capacitors [J]. J. Eur. Ceram. Soc., 2021, 41(1): 387
|
29 |
Guo H T, Zeng F F, Xiao W R, et al. Optimized energy storage performance in BF-BT-based lead-free ferroelectric ceramics with local compositional fluctuation [J]. J. Eur. Ceram. Soc., 2023, 43(11): 4774
|
30 |
Liu G, Tang M Y, Hou X, et al. Energy storage properties of bismuth ferrite based ternary relaxor ferroelectric ceramics through a viscous polymer process [J]. Chem. Eng. J., 2021, 412: 127555
|
31 |
Zeng F R, Jiang X P, Chen C, et al. Effect of Er3+ doping on the properties of Bi3Ti1.5W0.5O9-Bi4Ti3O12 symbiotic lead-free piezoelectric ceramics [J]. Chin. J. Mater. Res., 2022, 36(10): 760
|
|
曾仁芬, 江向平, 陈 超 等. Er3+掺杂对Bi3Ti1.5W0.5O9-Bi4Ti3O12共生无铅压电陶瓷性能的影响 [J]. 材料研究学报, 2022, 36(10): 760
doi: 10.11901/1005.3093.2021.302
|
32 |
Bai X Z, Chen Z T, Zheng P, et al. High recoverable energy storage density in nominal (0.67-x)BiFeO3-0.33BaTiO3-xBaBi2Nb2O9 lead-free composite ceramics [J]. Ceram. Int., 2021, 47(16): 23116
|
33 |
Xie L X, Tan Z, Wu X J, et al. Investigation of nonstoichiometric Fe on the ferroelectric properties of BiFeO3-based piezoelectric ceramics [J]. J. Solid. State. Chem., 2021, 304: 122614
|
34 |
Zhu L F, Zhang B P, Duan J Q, et al. Enhanced piezoelectric and ferroelectric properties of BiFeO3-BaTiO3 lead-free ceramics by optimizing the sintering temperature and dwell time [J]. J. Eur. Ceram. Soc., 2018, 38(10): 3463
|
35 |
Yi W B, Lu Z Y, Liu X Y, et al. Effects of Ga content on the structure and electrical performances of 0.69BiFe1 - x Ga x O3-0.31BaTiO3 lead-free ceramics [J]. Ceram. Int., 2021, 47(20): 28455
|
36 |
Ahmed T, Khan S A, Bae J, et al. Role of bi chemical pressure on electrical properties of BiFeO3-BaTiO3-based ceramics [J]. Solid. State. Sci., 2021, 114: 106562
|
37 |
Zhang M, Zhang X Y, Das S, et al. High remanent polarization and temperature-insensitive ferroelectric remanent polarization in BiFeO3-based lead-free perovskite [J]. J. Mater. Chem. C., 2019, 7(34): 10551
doi: 10.1039/c9tc02650a
|
38 |
Ryu G H, Hussain A, Lee M H, et al. Lead-free high performance Bi(Zn0.5Ti0.5)O3-modified BiFeO3-BaTiO3 piezoceramics [J]. J. Eur. Ceram. Soc., 2018, 38(13): 4414
|
39 |
Chen J, Cui B, Daniels J E, et al. Understanding the strain mechanisms in BiFeO3-BaTiO3 piezoelectric ceramics near the morphotropic phase boundary [J]. J. Eur. Ceram. Soc., 2023, 43(11): 4766
|
40 |
Chen J Y, Luo F, Liu Y S, et al. Enhanced piezoelectric properties in coarse-grained 0.7Bi(Fe0.9985Mn0.0015)O3-0.3BaTiO3 ceramics [J]. J. Alloy. Compd., 2023, 960: 170845
|
41 |
Ferrero G, Astafiev K, Ringgaard E, et al. Piezoelectric properties of mechanochemically processed 0.67BiFeO3-0.33BaTiO3 ceramics [J]. J. Eur. Ceram. Soc., 2023, 43(2): 350
|
42 |
Habib M, Akram F, Ahmad P, et al. Donor multiple effects on the ferroelectric and piezoelectric performance of lead-free BiFeO3-BaTiO3 ceramics [J]. Mater. Lett. 2022, 315: 131950
|
43 |
Lee M, Kim D, Park J, et al. High-performance lead-free piezoceramics with high curie temperatures [J]. Adv. Mater., 2015, 27(43): 6976
doi: 10.1002/adma.201502424
|
44 |
Lu Y S, Dai J Q. Enhanced electrical properties of (Zn, Mn)-modified BiFeO3-BaTiO3 lead-free ceramics prepared via sol-gel method and two-step sintering [J]. J. Alloy. Compd., 2022, 899: 163387
|
45 |
Murakami S, Wang D, Mostaed A, et al. High strain (0.4%) Bi(Mg2/3Nb1/3)O3‐BaTiO3‐BiFeO3 lead‐free piezoelectric ceramics and multilayers [J]. J. Am. Ceram. Soc., 2018, 101(12): 5428
|
46 |
Zhang M, Zhang X Y, Qi X W, et al. Enhanced ferroelectric, magnetic and magnetoelectric properties of multiferroic BiFeO3-BaTiO3-LaFeO3 ceramics [J]. Ceram. Int., 2018, 44(17): 21269
|
47 |
Ni F, Xu L X, Zhu K, et al. Improved piezoelectric performance via orientation regulation in novel BNT-BT-SBT thin film [J]. J. Alloy. Compd., 2023, 934: 167936
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|