Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (4): 272-280    DOI: 10.11901/1005.3093.2024.059
ARTICLES Current Issue | Archive | Adv Search |
Dielectric-, Ferroelectric- and Piezoelectric-property of Lu3+ Doped 0.67BiFeO3-0.33BaTiO3 Lead-free Piezoelectric Ceramics
CHEN Shiyu, LI Wei, KUANG Haiyan, GAO Shaowei, PANG Dongfang()
College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou 341000, China
Cite this article: 

CHEN Shiyu, LI Wei, KUANG Haiyan, GAO Shaowei, PANG Dongfang. Dielectric-, Ferroelectric- and Piezoelectric-property of Lu3+ Doped 0.67BiFeO3-0.33BaTiO3 Lead-free Piezoelectric Ceramics. Chinese Journal of Materials Research, 2025, 39(4): 272-280.

Download:  HTML  PDF(14962KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Rare earth ion modification has been widely used to improve the electrical properties of ferro/piezoelectric materials. In this work, Lu3+ doped lead-free ferroelectric ceramics of 0.67BiFe1 - x Lu x O3-0.33BaTiO3 (BF-BT-xLu, x = 0, 0.005, 0.008, 0.010, 0.012, 0.015, 0.020, 0.030) were prepared by using a conventional high-temperature solid-state reaction method. The results of XRD powder diffraction showed that the introduction of Lu3+ ions did not cause significant change of the crystal structure for the Lu3+ doped lead-free ferroelectric ceramics, and of which all the components of ceramics are retained in the morphotropic phase boundary (MPB) region, where tetragonal and rhombohedral perovskite structures coexisted. Microscopic morphology analysis shows that all ceramics were well sintered and have high relative density. By analyzing and comparing the changes in iron ion valence and oxygen vacancies, it can be determined that the incorporation of appropriate amount of Lu3+ ions can effectively hinder the transformation of Fe3+ ions to Fe2+ ions, thereby reducing the leakage current in the BF-BT-xLu ceramics, therewith, improving its electrical performance. Pure BF-BT exhibits P-E hysteresis loops of typical ferroelectrics, with remnant polarization (Pr) = 26.47 μC/cm2, coercive field (Ec) = 30.45 kV/cm. After moderate Lu3+ modification, the ferroelectric properties of the BF-BT system were improved, with Pr = 28.66 μC/cm2, Ec = 28.12 kV/cm for the BF-BT-0.015Lu. By 80 kV/cm at room temperature, the electric field-strain S of BF-BT-0.01Lu is 0.328%, and the high-field piezoelectric coefficient d33* is 410 pm/V. The present study expands the application of rare earth ions in the field of ferroelectric materials and provides an example for further designing high-performance BF-BT lead-free ferroelectrics.

Key words:  inorganic non-metallic materials      rare earth      perovskite      ferroelectric ceramics     
Received:  26 January 2024     
ZTFLH:  TQ174  
Fund: National Natural Science Foundation of China(51702317);Natural Science Foundation of Jiangxi Provincial Science and Technology(20212BAB214019)
Corresponding Authors:  PANG Dongfang, Tel: 18970786924, E-mail: 18970786924@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.059     OR     https://www.cjmr.org/EN/Y2025/V39/I4/272

Fig.1  XRD patterns of BF-BT-xLu (a) and enlarged pattern of (200) peak (b)
Fig.2  Scanning electron microscopy (SEM) images of fractured surfaces for BF-BT-xLu ceramics
Fig.3  Energy dispersive spectroscopy (EDS) of BF-BT-0.015Lu
Fig.4  XPS spectra of BF-BT-xLu ceramics Fe2+/Fe3+ ions peak positions (a) x = 0; (b) x = 0.005; (c) x = 0.008; (d) x = 0.010; (e) x = 0.012; (f) x = 0.015; (g) x = 0.020; (h) x = 0.030
Fig.5  XPS spectrum of BF-BT-0.02Lu ceramics O 1s (a) and proportion of oxygen vacancy in BF-BT-xLu ceramics (b)
Fig.6  Temperature dependence of dielectric constant (ε') (a) and dielectric loss (tanδ) (b) of BF-BT-0.015Lu
Fig.7  P-E hysteresis loops for BF-BT-xLu ceramics (a); the variations of Pr and Ec with the content of Lu3+ (b); J-E curves of BF-BT-xLu ceramics at room temperature (c); bipolar strains of BF-BT-xLu ceramics (d) in 80 kV/cm at room temperature
Fig.8  P-E loop of BF-BT-xLu ceramics measured and bipolar strain of BF-BT-xLu ceramics at variable temperature (a) x = 0; (b) x = 0.005; (c, e) x = 0.012; (d, f) x = 0.030
Fig.9  Comparison of d33* for BF-BT-0.010Lu ceramics with other BF-BT-based ceramics
1 Baptista F G, Filho J V. A new impedance measurement system for PZT-based structural health monitoring [J]. IEEE. T. Instrum. Meas., 2009, 58(10): 3602
2 Ali A I, Hassan M M, Goda M G, et al. Preparation, structural and dielectric properties of nanocomposite Al2O3/BaTiO3 for multilayer ceramic capacitors applications [J]. J. Mater. Res. Technol., 2022, 18: 2083
3 Jiang D H, Luo F, Liu Y S, et al. Ultrahigh strain in PZ-PT-BNT piezoelectric ceramic [J]. Ceram. Int., 2024, 502B: 3803
4 Wang T, Jin L, Tian Y, et al. Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage [J]. Mater. Lett., 2014, 137: 79
5 Yoo J, Oh D, Jeong Y, et al. Dielectric and piezoelectric characteristics of lead-free Bi0.5(Na0.84K0.16)0.5TiO3 ceramics substituted with Sr [J]. Mater. Lett., 2004, 58(29): 3831
6 Khan H A, Ullah S, Rehman G, et al. First principle study of band gap nature, spontaneous polarization, hyperfine field and electric field gradient of desirable multiferroic bismuth ferrite (BiFeO3) [J]. J. Phys. Chem. Solids., 2021, 148: 109737
7 Lin D, Zheng Q J, Li Y, et al. Microstructure, ferroelectric and piezoelectric properties of Bi0.5K0.5TiO3-modified BiFeO3-BaTiO3 lead-free ceramics with high curie temperature [J]. J. Eur. Ceram. Soc., 2013, 33(15): 3023
8 Wang L, Liang R, Zhou Z, et al. Thermally stable electrostrain in BiFeO3-BaTiO3-based high temperature lead-free piezoceramics [J]. Appl. Phys. Lett., 2019, 115(8): 082902
9 Zeng F F, Fan G F, Hao M M, et al. Conductive property of BiFeO3-BaTiO3 ferroelectric ceramics with high curie temperature [J]. J. Alloy. Compd., 2020, 831: 154853
10 Leontsev S O, Eitel R E. Progress in engineering high strain lead-free piezoelectric ceramics [J]. Sci. Technol. Adv. Mat., 2010, 11(4): 044302
11 Peng X Y, Tang Y C, Zhang B P, et al. High curie temperature BiFeO3-BaTiO3 lead-free piezoelectric ceramics: Ga3+ doping and enhanced insulation properties [J]. J. Appl. Phys., 2021, 130(14): 1
12 Xun B W, Song A Z, Yu J R, et al. Lead-free BiFeO3-BaTiO3 ceramics with high curie temperature: Fine compositional tuning across the phase boundary for high piezoelectric charge and strain coefficients [J]. ACS. Appl. Mater. Inter., 2021, 13(3): 4192
13 Xun B W, Tang Y C, Chen J Y, et al. Enhanced resistance in Bi(Fe1 - x Sc x )O3-0.3BaTiO3 lead-free piezoelectric ceramics: Facile analysis and reduction of oxygen vacancy [J]. J. Eur. Ceram. Soc., 2019, 39(14): 4085
14 Wang L, Liang R H, Zhou Z Y, et al. High electrostrain with high curie temperature in BiFeO3-BaTiO3-based ceramics [J]. Scr. Mater., 2019, 164: 62
15 Kuang H Y, He X, Oleg V, et al. Large electric field-induced strain and excellent photoluminescence properties of Pr-modified 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 lead-free ferroelectric ceramics [J]. Ceram. Int., 2023, 49(23): 39576
16 Li F. Ultrahigh piezoelectricity in ferroelectric ceramics by design [J]. Nat. Mater., 2018, 17(4): 349
doi: 10.1038/s41563-018-0034-4 pmid: 29555999
17 Chen Z T, Bu X Y, Ruan B X, et al. Simultaneously achieving high energy storage density and efficiency under low electric field in BiFeO3-based lead-free relaxor ferroelectric ceramics [J]. J. Eur. Ceram. Soc., 2020, 40(15): 5450
18 Li C Y, Zheng T, Wu J G. Competitive mechanism of temperature-dependent electrical properties in BiFeO3-BaTiO3 ferroelectrics controlled by domain evolution [J]. Acta. Mater., 2021, 206: 116601
19 Yue Y G, Xu X Z, Zhang M, et al. Grain size effects in Mn-modified 0.67BiFeO3-0.33BaTiO3 ceramics [J]. ACS. Appl. Mater. Inter., 2021, 13(48): 57548
20 Liu S, Feng W W, Li J H, et al. Realizing excellent energy storage performance and fatigue endurance in Sr0.7Sm0.2TiO3 modified 0.67BiFeO3-0.33BaTiO3 lead-free relaxor ceramics [J]. J. Eur. Ceram. Soc., 2022, 42(16): 7430
21 Zhang Y, Huang R X, Liang Z H, et al. Reduction inhibition of Fe3+ ions in mn-doped 0.7BiFeO3-0.3BaTiO3 ceramics by direct reaction sintering [J]. Ceram. Int., 2022, 48(18): 26696
22 Guo Y, Xiao P, Wen R, et al. Critical roles of Mn-ions in enhancing the insulation, piezoelectricity and multiferroicity of BiFeO3-based lead-free high temperature ceramics [J]. J. Mater. Chem. C, 2015, 3(22): 5811
23 He X, Chen C, Wang L, et al. Giant electromechanical response in layered ferroelectrics enabled by asymmetric ferroelastic switching [J]. Mate. Today., 2022, 58: 48
24 Kang F, Zhang L X, Huang B, et al. Enhanced electromechanical properties of SrTiO3-BiFeO3-BaTiO3 ceramics via relaxor behavior and phase boundary design [J]. J. Eur. Ceram. Soc., 2020, 40(4): 1198
25 Tang L, Zhou X F, Habib M, et al. Phase structure and electrical properties of BiFeO3-BaTiO3 ceramics near the morphotropic phase boundary [J]. Ceram. Int., 2023, 49(19): 31965
26 Zhao C, Li Z, Wu J. Role of trivalent acceptors and pentavalent donors in colossal permittivity of titanium dioxide ceramics [J]. J. Mater. Chem. C., 2019, 7(14): 4235
27 Zhou Q, Zhou C, Yang H, et al. Dielectric, ferroelectric, and piezoelectric properties of Bi(Ni1/2Ti1/2)O3-modified BiFeO3- BaTiO3 Ceramics with high curie temperature [J]. J. Am. Ceram. Soc., 2012, 95(12): 3889
28 Li Q J, Ji S S, Wang D D, et al. Simultaneously enhanced energy storage density and efficiency in novel BiFeO3-based lead-free ceramic capacitors [J]. J. Eur. Ceram. Soc., 2021, 41(1): 387
29 Guo H T, Zeng F F, Xiao W R, et al. Optimized energy storage performance in BF-BT-based lead-free ferroelectric ceramics with local compositional fluctuation [J]. J. Eur. Ceram. Soc., 2023, 43(11): 4774
30 Liu G, Tang M Y, Hou X, et al. Energy storage properties of bismuth ferrite based ternary relaxor ferroelectric ceramics through a viscous polymer process [J]. Chem. Eng. J., 2021, 412: 127555
31 Zeng F R, Jiang X P, Chen C, et al. Effect of Er3+ doping on the properties of Bi3Ti1.5W0.5O9-Bi4Ti3O12 symbiotic lead-free piezoelectric ceramics [J]. Chin. J. Mater. Res., 2022, 36(10): 760
曾仁芬, 江向平, 陈 超 等. Er3+掺杂对Bi3Ti1.5W0.5O9-Bi4Ti3O12共生无铅压电陶瓷性能的影响 [J]. 材料研究学报, 2022, 36(10): 760
doi: 10.11901/1005.3093.2021.302
32 Bai X Z, Chen Z T, Zheng P, et al. High recoverable energy storage density in nominal (0.67-x)BiFeO3-0.33BaTiO3-xBaBi2Nb2O9 lead-free composite ceramics [J]. Ceram. Int., 2021, 47(16): 23116
33 Xie L X, Tan Z, Wu X J, et al. Investigation of nonstoichiometric Fe on the ferroelectric properties of BiFeO3-based piezoelectric ceramics [J]. J. Solid. State. Chem., 2021, 304: 122614
34 Zhu L F, Zhang B P, Duan J Q, et al. Enhanced piezoelectric and ferroelectric properties of BiFeO3-BaTiO3 lead-free ceramics by optimizing the sintering temperature and dwell time [J]. J. Eur. Ceram. Soc., 2018, 38(10): 3463
35 Yi W B, Lu Z Y, Liu X Y, et al. Effects of Ga content on the structure and electrical performances of 0.69BiFe1 - x Ga x O3-0.31BaTiO3 lead-free ceramics [J]. Ceram. Int., 2021, 47(20): 28455
36 Ahmed T, Khan S A, Bae J, et al. Role of bi chemical pressure on electrical properties of BiFeO3-BaTiO3-based ceramics [J]. Solid. State. Sci., 2021, 114: 106562
37 Zhang M, Zhang X Y, Das S, et al. High remanent polarization and temperature-insensitive ferroelectric remanent polarization in BiFeO3-based lead-free perovskite [J]. J. Mater. Chem. C., 2019, 7(34): 10551
doi: 10.1039/c9tc02650a
38 Ryu G H, Hussain A, Lee M H, et al. Lead-free high performance Bi(Zn0.5Ti0.5)O3-modified BiFeO3-BaTiO3 piezoceramics [J]. J. Eur. Ceram. Soc., 2018, 38(13): 4414
39 Chen J, Cui B, Daniels J E, et al. Understanding the strain mechanisms in BiFeO3-BaTiO3 piezoelectric ceramics near the morphotropic phase boundary [J]. J. Eur. Ceram. Soc., 2023, 43(11): 4766
40 Chen J Y, Luo F, Liu Y S, et al. Enhanced piezoelectric properties in coarse-grained 0.7Bi(Fe0.9985Mn0.0015)O3-0.3BaTiO3 ceramics [J]. J. Alloy. Compd., 2023, 960: 170845
41 Ferrero G, Astafiev K, Ringgaard E, et al. Piezoelectric properties of mechanochemically processed 0.67BiFeO3-0.33BaTiO3 ceramics [J]. J. Eur. Ceram. Soc., 2023, 43(2): 350
42 Habib M, Akram F, Ahmad P, et al. Donor multiple effects on the ferroelectric and piezoelectric performance of lead-free BiFeO3-BaTiO3 ceramics [J]. Mater. Lett. 2022, 315: 131950
43 Lee M, Kim D, Park J, et al. High-performance lead-free piezoceramics with high curie temperatures [J]. Adv. Mater., 2015, 27(43): 6976
doi: 10.1002/adma.201502424
44 Lu Y S, Dai J Q. Enhanced electrical properties of (Zn, Mn)-modified BiFeO3-BaTiO3 lead-free ceramics prepared via sol-gel method and two-step sintering [J]. J. Alloy. Compd., 2022, 899: 163387
45 Murakami S, Wang D, Mostaed A, et al. High strain (0.4%) Bi(Mg2/3Nb1/3)O3‐BaTiO3‐BiFeO3 lead‐free piezoelectric ceramics and multilayers [J]. J. Am. Ceram. Soc., 2018, 101(12): 5428
46 Zhang M, Zhang X Y, Qi X W, et al. Enhanced ferroelectric, magnetic and magnetoelectric properties of multiferroic BiFeO3-BaTiO3-LaFeO3 ceramics [J]. Ceram. Int., 2018, 44(17): 21269
47 Ni F, Xu L X, Zhu K, et al. Improved piezoelectric performance via orientation regulation in novel BNT-BT-SBT thin film [J]. J. Alloy. Compd., 2023, 934: 167936
[1] XU Zhanyuan, ZHAO Wei, SHI Xiangshi, ZHANG Zhenyu, WANG Zhonggang, HAN Yong, FAN Jinglian. Effect of Composition Adjustment on Structure and Magnetic Properties of Soft Magnetic MnZn Ferrites[J]. 材料研究学报, 2025, 39(1): 55-62.
[2] DENG Xiaolong, WANG Shanshan, DAI Xinxin, LIU Yi, HUANG Jinzhao. Preparation and Performance of Electrocatalyst of Amorphous FeOOH Covered Layered Double Hydroxide CoFeAl-Heterostructure for Efficient Overall Water Splitting in Alkaline Solution[J]. 材料研究学报, 2025, 39(1): 71-80.
[3] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[4] YUAN Xinzhong, WANG Cunjing, YAO Peng, LI Qiong, MA Zhihua, LI Pengfa. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors[J]. 材料研究学报, 2024, 38(7): 529-536.
[5] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
[6] WU Qianfang, HE Qun, CHANG Bing, QUAN Yuxin, HU Jingwen, LI Saisai, CAO Yingnan. Preparation and Neutron Shielding Properties of Fiberglass Based Thermal Insulating Porous Ceramics[J]. 材料研究学报, 2024, 38(6): 471-480.
[7] GUO Zhinan, ZHAO Qiang, LI Shuying, WANG Junli, XU Lin, SHANG Jianpeng, GUO Yong. Preparation and Degradation Performance of Composite Photocatalyst of Two-Dimensional Layered ZnNiAl-LDH/ Cuprous Oxide Particles[J]. 材料研究学报, 2024, 38(6): 423-429.
[8] WANG Wei, CHANG Wenjuan, LV Fanfan, XIE Zelei, YU Chengcheng. Preparation and Tribological Properties of Fluorinated Boron Nitride Nanosheets Water-based Additive[J]. 材料研究学报, 2024, 38(6): 410-422.
[9] WANG Jun, WANG Xuanli, LIU Shuang, SONG Rui, SONG Xiwen. Effect of Mn Doping on Microstructure and Thermal Conductivity of (Y0.4Er0.6)3Al5O12 Ceramics Material for Thermal Barrier Coating[J]. 材料研究学报, 2024, 38(6): 463-470.
[10] TAN Yiling, LI Shichun, SUN Jie. Preparation of Metal-organic Framework Porous Glass agSALEM-2[J]. 材料研究学报, 2024, 38(5): 373-378.
[11] XU Hui, ZHANG Peiyuan, XU Nana, LIU Tao, ZHANG Xiaoshan, WANG Bing, WANG Yingde. Mechanical Property and Thermal Insulation Performance of SiO2/ZrO2 Nanofiber Membranes with High Thermal Stability[J]. 材料研究学报, 2024, 38(5): 365-372.
[12] WANG Yan, ZHANG Hao, CHANG Na, WANG Haitao. Preparation of Acid-alkali Modified Coal Fly Ash Adsorbent and Its Removal Performance on Dyes[J]. 材料研究学报, 2024, 38(5): 379-389.
[13] LI Jing, XU Yingchao, FAN Haoshuang, LU Yi, LI Li, ZHANG Xianyu. Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor[J]. 材料研究学报, 2024, 38(4): 288-296.
[14] LIU Rui, ZHANG Dingdong, ZHANG Hui, REN Wencai, DU Jinhong. Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes[J]. 材料研究学报, 2024, 38(3): 168-176.
[15] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
No Suggested Reading articles found!