|
|
Toughening Mechanism of B4C-Al2O3 Composite Ceramics |
ZHANG Wei1( ), ZHANG Jie1,2 |
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China |
|
Cite this article:
ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics. Chinese Journal of Materials Research, 2024, 38(8): 614-620.
|
Abstract B4C ceramics has extremely high hardness, but its fracture toughness is low. In order to improve the fracture toughness of B4C ceramics, the effect of introducing the second phase Al2O3 on the fracture toughness of B4C ceramics is studied, and the toughening mechanism of B4C-Al2O3 composite ceramics is explored. The results indicate that the addition of Al2O3 as the second phase can improve the fracture toughness of B4C ceramics. Among others, the fracture toughness of B4C-Al2O3 composite ceramics with 40%Al2O3 reaches a maximum value of 4.96 MPa·m1/2. The toughening mechanism of B4C-Al2O3 composite ceramics is that Al2O3 grains experience cleavage cracking during the crack propagation, increasing the path of crack propagation; thus, part of crack propagation energy is consumed. Meanwhile, residual stress is generated between Al2O3 grains and B4C grains due to their thermal expansion mismatch. On the one hand, the compressive stress inside B4C grains is beneficial for inhibiting crack propagation. On the other hand, the tensile stress generated at the phase boundary between B4C grains and Al2O3 grains weakens the bonding of the phase boundary to some extent, leading to some cracks propagating along the phase boundary during the propagation process; therefore, some cracks are deflected, and so the fracture toughness of B4C-Al2O3 composite ceramics is improved.
|
Received: 24 October 2023
|
|
Fund: Natural Science Foundation of Liaoning Province of China(2022-MS-013);Starting Grants of Institute of Metal Research, Chinese Academy of Science(E255L401);Shenyang National Laboratory for Materials Science(E21SL412) |
Corresponding Authors:
ZHANG Wei, Tel: 15542342305, email: cnzhangwei2008@126.com
|
1 |
Zhang W. An overview of the synthesis of silicon carbide-boron carbide composite powders [J]. Nanotechnol. Rev., 2023, 12: 20220571
|
2 |
Zhang W, Yamashita S, Kita H. Progress in pressureless sintering of boron carbide ceramics-a review [J]. Adv. Appl. Ceram., 2019, 118(4): 222
doi: 10.1080/17436753.2019.1574285
|
3 |
Zhang W. A review of tribological properties for boron carbide ceramics [J]. Prog. Mater. Sci., 2021, 116: 100718
|
4 |
Zhang W. A novel ceramic with low friction and wear toward tribological applications: Boron carbide-silicon carbide [J]. Adv. Colloid Interface Sci., 2022, 301: 102604
|
5 |
Zhang W, Chen X Y, Yamashita S, et al. B4C-SiC ceramics with interfacial nanorelief morphologies and low underwater friction and wear [J]. ACS Appl. Nano Mater., 2021, 4(3): 3159
|
6 |
Hwang C, Yang Q, Xiang S, et al. Fabrication of dense B4C-preceramic polymer derived SiC composite [J]. J. Eur. Ceram. Soc., 2019, 39(4): 718
doi: 10.1016/j.jeurceramsoc.2018.12.029
|
7 |
Chen W, Hao W H, Gao D Q, et al. Effect of sintering temperature on microstructure and physical and mechanical properties of B4C matrix composite ceramic [J]. Superhard Mater. Eng., 2020, 32(6): 35
|
|
陈 威, 郝文慧, 高东强 等. 烧结温度对B4C基复合陶瓷的组织及物理力学性能的影响 [J]. 超硬材料工程, 2020, 32(6): 35
|
8 |
Xu C M, Zeng H, Zhang G J. Pressureless sintering of boron carbide ceramics with Al-Si additives [J]. Int. J. Refract. Met. Hard Mater., 2013, 41: 2
|
9 |
Zhang W, Yamashita S, Kita H. Tribological properties of SiC-B4C ceramics under dry sliding condition [J]. J. Eur. Ceram. Soc., 2020, 40(8): 2855
|
10 |
Baharvandi H R, Hadian A M. Pressureless sintering of TiB2-B4C ceramic matrix composite [J]. J. Mater. Eng. Perform., 2008, 17(6): 838
|
11 |
Zhang Z X, Du X W, Wang W M, et al. Preparation of B4C-SiC composite ceramics through hot pressing assisted by mechanical alloying [J]. Int. J. Refract. Met. Hard Mater., 2013, 41: 270
|
12 |
Zhang W, Zhang J, Duan C L, et al. Research progress in Al2O3 thermal shock resistant ceramics [J]. J. Shenyang Univ. Technol., 2020, 42(6): 624
|
|
张 巍, 张 金, 段春雷 等. Al2O3抗热震陶瓷的研究进展 [J]. 沈阳工业大学学报, 2020, 42(6): 624
|
13 |
Wang H, Zhao H F, Kang J S, et al. Properties of ZnO varistor ceramics Co-doped with B2O3 and Al2O3 [J]. Chin. J. Mater. Res., 2021, 35(2): 110
|
|
王 昊, 赵洪峰, 康加爽 等. B2O3和Al2O3共同掺杂ZnO压敏陶瓷的性能 [J]. 材料研究学报, 2021, 35(2): 110
|
14 |
She J H, Guo J K, Jiang D L. Hot isostatic pressing of α-silicon carbide ceramics [J]. Ceram. Int., 1993, 19(5): 347
|
15 |
Tekeli S. The flexural strength, fracture toughness, hardness and densification behaviour of various amount of Al2O3-doped 8YSCZ/Al2O3 composites used as an electrolyte for solid oxide fuel cell [J]. Mater. Des., 2006, 27: 230
|
16 |
Lee C H, Kim C H. Pressureless sintering and related phenomena of Al2O3-doped B4C reaction [J]. J. Mater. Sci., 1992, 27(23): 6335
|
17 |
Jiang H W, Fu S N, Huang H L, et al. Pressureless sintering of boron carbide with an addition of alumina [J]. Powder Metall. Technol., 2017, 35(6): 462
|
18 |
Kim H W, Koh Y H, Kim H E. Densification and mechanical properties of B4C with Al2O3 as a sintering aid [J]. J. Am. Ceram. Soc., 2000, 83(11): 2863
|
19 |
So S M, Choi W H, Kim K H, et al. Mechanical properties of B4C-SiC composites fabricated by hot-press sintering [J]. Ceram. Int., 2020, 46(7): 9575
|
20 |
Wang J Q, Tian X L, Zhang B G, et al. Fracture toughness measurement based on laser cutting for Si3N4 ceramics [J]. B. Chin. Ceram. Soc., 2013, 32(1): 103
|
|
王健全, 田欣利, 张保国 等. 基于激光切割的Si3N4陶瓷断裂韧性测试方法 [J]. 硅酸盐通报, 2013, 32(1): 103
|
21 |
Ren Q, Su H J, Zhang J, et al. Microstructure control, competitive growth and precipitation rule in faceted Al2O3/Er3Al5O12 eutectic in situ composite ceramics prepared by laser floating zone melting [J]. J. Eur. Ceram. Soc., 2019, 39(5): 1900
|
22 |
Moshtaghioun B M, Ortiz A L, García D G, et al. Toughening of super-hard ultra-fine grained B4C densified by spark-plasma sintering via SiC addition [J]. J. Eur. Ceram. Soc., 2013, 33(8): 1395
|
23 |
Li C R, Li S, An D, et al. Microstructure and mechanical properties of spark plasma sintered SiC ceramics aided by B4C [J]. Ceram. Int., 2020, 46(8): 10142
|
24 |
Eom J H, Kim Y W, Raju S. Processing and properties of macroporous silicon carbide ceramics: A review [J]. J. Asian Ceram. Soc., 2013, 1(3): 220
|
25 |
Zhang W. Recent progress in B4C-SiC composite ceramics: processing, microstructure, and mechanical properties [J]. Mater. Adv., 2023, 4(15): 3140
|
26 |
Su X J, Liu Y H, Chen K. Effects of microstructure on fracture toughness of Al2O3 ceramic materials [J]. J. Inorg. Mater., 1994, 9(2): 221
|
|
苏雪筠, 刘粤惠, 陈 楷. 氧化铝瓷的显微结构与断裂韧性关系的研究 [J]. 无机材料学报, 1994, 9(2): 221
|
27 |
Zhang Z. Research on fracture mode and fracture toughness of typical engineering ceramics [D]. Qinhuangdao: Yanshan University, 2017
|
|
张 震. 典型工程陶瓷材料的断裂形式及断裂韧性研究 [D]. 秦皇岛: 燕山大学, 2017
|
28 |
Zhang W, Yamashita S, Kumazawa T, et al. A study on formation mechanisms of relief structure formed in situ on the surface of ceramics [J]. Ceram. Int., 2019, 45(17): 23143
doi: 10.1016/j.ceramint.2019.08.008
|
29 |
Yaşar Z A, Haber R A. Evaluating the role of uniformity on the properties of B4C-SiC composites [J]. Ceram. Int., 2021, 47(4): 4838
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|