Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (8): 614-620    DOI: 10.11901/1005.3093.2023.521
ARTICLES Current Issue | Archive | Adv Search |
Toughening Mechanism of B4C-Al2O3 Composite Ceramics
ZHANG Wei1(), ZHANG Jie1,2
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
Cite this article: 

ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics. Chinese Journal of Materials Research, 2024, 38(8): 614-620.

Download:  HTML  PDF(9799KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

B4C ceramics has extremely high hardness, but its fracture toughness is low. In order to improve the fracture toughness of B4C ceramics, the effect of introducing the second phase Al2O3 on the fracture toughness of B4C ceramics is studied, and the toughening mechanism of B4C-Al2O3 composite ceramics is explored. The results indicate that the addition of Al2O3 as the second phase can improve the fracture toughness of B4C ceramics. Among others, the fracture toughness of B4C-Al2O3 composite ceramics with 40%Al2O3 reaches a maximum value of 4.96 MPa·m1/2. The toughening mechanism of B4C-Al2O3 composite ceramics is that Al2O3 grains experience cleavage cracking during the crack propagation, increasing the path of crack propagation; thus, part of crack propagation energy is consumed. Meanwhile, residual stress is generated between Al2O3 grains and B4C grains due to their thermal expansion mismatch. On the one hand, the compressive stress inside B4C grains is beneficial for inhibiting crack propagation. On the other hand, the tensile stress generated at the phase boundary between B4C grains and Al2O3 grains weakens the bonding of the phase boundary to some extent, leading to some cracks propagating along the phase boundary during the propagation process; therefore, some cracks are deflected, and so the fracture toughness of B4C-Al2O3 composite ceramics is improved.

Key words:  inorganic non-metallic materials      fracture toughness      B4C-Al2O3 composite ceramics      cleavage structure      thermal expansion mismatch      crack propagation     
Received:  24 October 2023     
ZTFLH:  TB321  
Fund: Natural Science Foundation of Liaoning Province of China(2022-MS-013);Starting Grants of Institute of Metal Research, Chinese Academy of Science(E255L401);Shenyang National Laboratory for Materials Science(E21SL412)
Corresponding Authors:  ZHANG Wei, Tel: 15542342305, email: cnzhangwei2008@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.521     OR     https://www.cjmr.org/EN/Y2024/V38/I8/614

B4CAl2O3Al2O3 + Y2O3
A09109
A190100
A280200
A370300
A460400
Table 1  Composition of B4C-Al2O3 composite ceramics (%, mass fraction)
Fig.1  XRD patterns of B4C-Al2O3 composite ceramics
Relative density / %Grain size / μm
B4CAl2O3Avg.
A098.41.07--
A188.91.051.561.08
A296.11.011.221.04
A398.80.751.470.90
A498.50.811.631.05
Table 2  Relative density and grain size of B4C-Al2O3 composite ceramics
Fig.2  Surface morphology of A4 specimen
Fig.3  Grain morphology of A3 specimen (a) typical bright-field TEM micrograph and (b) EDS analysis of O element in Fig.3a
Fig.4  Fracture toughness of B4C-Al2O3 composite ceramics
Fig.5  Surface morphologies of A1 and A3 specimens tested for fracture toughness via IF (a) A1 and (b) A3
Fig.6  Fracture surfaces of B4C-Al2O3 composite ceramics tested for fracture toughness by SENB (a) A0, (b) A1, (c) A2, (d) A3, (e) A4, (f) EDS analysis of point B in Fig.6 (e)
Fig.7  HRTEM image of A4 specimen (a) and schematic diagram of stress distribution in B4C-Al2O3 composite ceramics (b)
1 Zhang W. An overview of the synthesis of silicon carbide-boron carbide composite powders [J]. Nanotechnol. Rev., 2023, 12: 20220571
2 Zhang W, Yamashita S, Kita H. Progress in pressureless sintering of boron carbide ceramics-a review [J]. Adv. Appl. Ceram., 2019, 118(4): 222
doi: 10.1080/17436753.2019.1574285
3 Zhang W. A review of tribological properties for boron carbide ceramics [J]. Prog. Mater. Sci., 2021, 116: 100718
4 Zhang W. A novel ceramic with low friction and wear toward tribological applications: Boron carbide-silicon carbide [J]. Adv. Colloid Interface Sci., 2022, 301: 102604
5 Zhang W, Chen X Y, Yamashita S, et al. B4C-SiC ceramics with interfacial nanorelief morphologies and low underwater friction and wear [J]. ACS Appl. Nano Mater., 2021, 4(3): 3159
6 Hwang C, Yang Q, Xiang S, et al. Fabrication of dense B4C-preceramic polymer derived SiC composite [J]. J. Eur. Ceram. Soc., 2019, 39(4): 718
doi: 10.1016/j.jeurceramsoc.2018.12.029
7 Chen W, Hao W H, Gao D Q, et al. Effect of sintering temperature on microstructure and physical and mechanical properties of B4C matrix composite ceramic [J]. Superhard Mater. Eng., 2020, 32(6): 35
陈 威, 郝文慧, 高东强 等. 烧结温度对B4C基复合陶瓷的组织及物理力学性能的影响 [J]. 超硬材料工程, 2020, 32(6): 35
8 Xu C M, Zeng H, Zhang G J. Pressureless sintering of boron carbide ceramics with Al-Si additives [J]. Int. J. Refract. Met. Hard Mater., 2013, 41: 2
9 Zhang W, Yamashita S, Kita H. Tribological properties of SiC-B4C ceramics under dry sliding condition [J]. J. Eur. Ceram. Soc., 2020, 40(8): 2855
10 Baharvandi H R, Hadian A M. Pressureless sintering of TiB2-B4C ceramic matrix composite [J]. J. Mater. Eng. Perform., 2008, 17(6): 838
11 Zhang Z X, Du X W, Wang W M, et al. Preparation of B4C-SiC composite ceramics through hot pressing assisted by mechanical alloying [J]. Int. J. Refract. Met. Hard Mater., 2013, 41: 270
12 Zhang W, Zhang J, Duan C L, et al. Research progress in Al2O3 thermal shock resistant ceramics [J]. J. Shenyang Univ. Technol., 2020, 42(6): 624
张 巍, 张 金, 段春雷 等. Al2O3抗热震陶瓷的研究进展 [J]. 沈阳工业大学学报, 2020, 42(6): 624
13 Wang H, Zhao H F, Kang J S, et al. Properties of ZnO varistor ceramics Co-doped with B2O3 and Al2O3 [J]. Chin. J. Mater. Res., 2021, 35(2): 110
王 昊, 赵洪峰, 康加爽 等. B2O3和Al2O3共同掺杂ZnO压敏陶瓷的性能 [J]. 材料研究学报, 2021, 35(2): 110
14 She J H, Guo J K, Jiang D L. Hot isostatic pressing of α-silicon carbide ceramics [J]. Ceram. Int., 1993, 19(5): 347
15 Tekeli S. The flexural strength, fracture toughness, hardness and densification behaviour of various amount of Al2O3-doped 8YSCZ/Al2O3 composites used as an electrolyte for solid oxide fuel cell [J]. Mater. Des., 2006, 27: 230
16 Lee C H, Kim C H. Pressureless sintering and related phenomena of Al2O3-doped B4C reaction [J]. J. Mater. Sci., 1992, 27(23): 6335
17 Jiang H W, Fu S N, Huang H L, et al. Pressureless sintering of boron carbide with an addition of alumina [J]. Powder Metall. Technol., 2017, 35(6): 462
18 Kim H W, Koh Y H, Kim H E. Densification and mechanical properties of B4C with Al2O3 as a sintering aid [J]. J. Am. Ceram. Soc., 2000, 83(11): 2863
19 So S M, Choi W H, Kim K H, et al. Mechanical properties of B4C-SiC composites fabricated by hot-press sintering [J]. Ceram. Int., 2020, 46(7): 9575
20 Wang J Q, Tian X L, Zhang B G, et al. Fracture toughness measurement based on laser cutting for Si3N4 ceramics [J]. B. Chin. Ceram. Soc., 2013, 32(1): 103
王健全, 田欣利, 张保国 等. 基于激光切割的Si3N4陶瓷断裂韧性测试方法 [J]. 硅酸盐通报, 2013, 32(1): 103
21 Ren Q, Su H J, Zhang J, et al. Microstructure control, competitive growth and precipitation rule in faceted Al2O3/Er3Al5O12 eutectic in situ composite ceramics prepared by laser floating zone melting [J]. J. Eur. Ceram. Soc., 2019, 39(5): 1900
22 Moshtaghioun B M, Ortiz A L, García D G, et al. Toughening of super-hard ultra-fine grained B4C densified by spark-plasma sintering via SiC addition [J]. J. Eur. Ceram. Soc., 2013, 33(8): 1395
23 Li C R, Li S, An D, et al. Microstructure and mechanical properties of spark plasma sintered SiC ceramics aided by B4C [J]. Ceram. Int., 2020, 46(8): 10142
24 Eom J H, Kim Y W, Raju S. Processing and properties of macroporous silicon carbide ceramics: A review [J]. J. Asian Ceram. Soc., 2013, 1(3): 220
25 Zhang W. Recent progress in B4C-SiC composite ceramics: processing, microstructure, and mechanical properties [J]. Mater. Adv., 2023, 4(15): 3140
26 Su X J, Liu Y H, Chen K. Effects of microstructure on fracture toughness of Al2O3 ceramic materials [J]. J. Inorg. Mater., 1994, 9(2): 221
苏雪筠, 刘粤惠, 陈 楷. 氧化铝瓷的显微结构与断裂韧性关系的研究 [J]. 无机材料学报, 1994, 9(2): 221
27 Zhang Z. Research on fracture mode and fracture toughness of typical engineering ceramics [D]. Qinhuangdao: Yanshan University, 2017
张 震. 典型工程陶瓷材料的断裂形式及断裂韧性研究 [D]. 秦皇岛: 燕山大学, 2017
28 Zhang W, Yamashita S, Kumazawa T, et al. A study on formation mechanisms of relief structure formed in situ on the surface of ceramics [J]. Ceram. Int., 2019, 45(17): 23143
doi: 10.1016/j.ceramint.2019.08.008
29 Yaşar Z A, Haber R A. Evaluating the role of uniformity on the properties of B4C-SiC composites [J]. Ceram. Int., 2021, 47(4): 4838
[1] YUAN Xinzhong, WANG Cunjing, YAO Peng, LI Qiong, MA Zhihua, LI Pengfa. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors[J]. 材料研究学报, 2024, 38(7): 529-536.
[2] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
[3] WU Qianfang, HE Qun, CHANG Bing, QUAN Yuxin, HU Jingwen, LI Saisai, CAO Yingnan. Preparation and Neutron Shielding Properties of Fiberglass Based Thermal Insulating Porous Ceramics[J]. 材料研究学报, 2024, 38(6): 471-480.
[4] WANG Jun, WANG Xuanli, LIU Shuang, SONG Rui, SONG Xiwen. Effect of Mn Doping on Microstructure and Thermal Conductivity of (Y0.4Er0.6)3Al5O12 Ceramics Material for Thermal Barrier Coating[J]. 材料研究学报, 2024, 38(6): 463-470.
[5] GUO Zhinan, ZHAO Qiang, LI Shuying, WANG Junli, XU Lin, SHANG Jianpeng, GUO Yong. Preparation and Degradation Performance of Composite Photocatalyst of Two-Dimensional Layered ZnNiAl-LDH/ Cuprous Oxide Particles[J]. 材料研究学报, 2024, 38(6): 423-429.
[6] WANG Wei, CHANG Wenjuan, LV Fanfan, XIE Zelei, YU Chengcheng. Preparation and Tribological Properties of Fluorinated Boron Nitride Nanosheets Water-based Additive[J]. 材料研究学报, 2024, 38(6): 410-422.
[7] TAN Yiling, LI Shichun, SUN Jie. Preparation of Metal-organic Framework Porous Glass agSALEM-2[J]. 材料研究学报, 2024, 38(5): 373-378.
[8] XU Hui, ZHANG Peiyuan, XU Nana, LIU Tao, ZHANG Xiaoshan, WANG Bing, WANG Yingde. Mechanical Property and Thermal Insulation Performance of SiO2/ZrO2 Nanofiber Membranes with High Thermal Stability[J]. 材料研究学报, 2024, 38(5): 365-372.
[9] WANG Yan, ZHANG Hao, CHANG Na, WANG Haitao. Preparation of Acid-alkali Modified Coal Fly Ash Adsorbent and Its Removal Performance on Dyes[J]. 材料研究学报, 2024, 38(5): 379-389.
[10] LI Jing, XU Yingchao, FAN Haoshuang, LU Yi, LI Li, ZHANG Xianyu. Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor[J]. 材料研究学报, 2024, 38(4): 288-296.
[11] LIU Rui, ZHANG Dingdong, ZHANG Hui, REN Wencai, DU Jinhong. Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes[J]. 材料研究学报, 2024, 38(3): 168-176.
[12] ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater[J]. 材料研究学报, 2024, 38(2): 141-150.
[13] ZENG Daoping, AN Tongbang, ZHENG Shaoxian, DAI Haiyang, CAO Zhilong, MA Chengyong. Fracture Toughness of Weld Metal of 440 MPa Grade High-strength Steel[J]. 材料研究学报, 2024, 38(2): 151-160.
[14] LI Bosen, LIAO Zhongxin, GAO Daqiang. Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2024, 38(1): 51-60.
[15] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
No Suggested Reading articles found!