Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (10): 782-790    DOI: 10.11901/1005.3093.2024.250
ARTICLES Current Issue | Archive | Adv Search |
Effect of Deformation Rate on Microstructure and Hardness of Cold-rolled GCr15 Steel Bearing Ring
SU Yong1, LIU Can1, ZHANG Hongwei2, YU Xingfu3(), HAO Tianci4
1.School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2.Meteorological Center of Air Traffic Administration in Northeast China, Shenyang 110169, China
3.School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
4.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
Cite this article: 

SU Yong, LIU Can, ZHANG Hongwei, YU Xingfu, HAO Tianci. Effect of Deformation Rate on Microstructure and Hardness of Cold-rolled GCr15 Steel Bearing Ring. Chinese Journal of Materials Research, 2024, 38(10): 782-790.

Download:  HTML  PDF(13110KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Herein, the effect of deformation rate on the residual stress distribution, carbide precipitation behavior and hardness of the cold rolled expanding deep groove ball bearing rings of GCr15 steel were studied by means of microstructure observation, residual stress and mechanical property measurements as well as finite element simulation. According to the finite element simulation with three different feed rates of 0.50, 0.70 and 0.90 mm/s respectively for the cold rolling process, it follows that the mean residual compressive stress on the outer surface of the bearing ring is -170.49 MPa when the feed rate is 0.50 mm/s, which is only 6.49% different from the experimental result of -160.10 MPa, indicating the reliability of the simulation. With the increase of feed rate, the deformation rate of the ring increases, the relative deformation between the core and the surface layer increases, and the residual stress also increases. The carbides in the inner surface layer of the ring are uniformly distributed and fine. The distribution of carbides is the densest and their average size is the smallest and their average size is the smallest in the groove. The hardness of the ring varies along the radial direction, the inner surface has greater hardness than the outer surface, and the groove position has the maximum hardness.

Key words:  metallic materials      GCr15      cold rolling      numerical simulation      bearing ring     
Received:  31 May 2024     
ZTFLH:  TG335.12  
Fund: Project of Liaoning Provincial Department of Education(LJKM20220770)
Corresponding Authors:  YU Xingfu, Tel: 13604072060, E-mail: yuxingfu@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.250     OR     https://www.cjmr.org/EN/Y2024/V38/I10/782

ElementCSiMnPSCrFe
Content1.0500.3300.3400.0200.0231.610Bal.
Table 1  Chemical composition of GCr15 bearing steel(mass fraction, %)
Fig.1  Dimensional drawing of GCr15 bearing ring (a) blank drawing; (b) pre-finished product drawing (unit: mm)
Fig.2  Assembly drawing of cold rolling expansion processing
Fig.3  Stress strain curves of GCr15 bearing steel (a) nominal stress-strain curve; (b) true stress-strain curve
SchemesSpeed and time in different cold rolling stages (mm/s × s)
A0.50 × 12.00.25 × 10.00.12 × 8.50.06 × 2.80.01 × 1.20 × 10.0
B0.70 × 8.00.30 × 8.00.16 × 7.00.08 × 6.00.04 × 2.50 × 10.0
C0.90 × 6.00.40 × 6.00.20 × 5.50.12 × 5.00.05 × 4.00 × 10.0
Table 2  Feed rate schemes for cold rolling processing
Fig.4  Schematic diagram of point locations for residual stress and hardness measurement and microstructure observation
Fig.5  Simulation results of initial and residual stresses of the cold rolled expansion GCr15 bearing ring under different feed rates (a) initial stress, 0.50 mm/s; (b) initial stress, 0.70 mm/s; (c) initial stress, 0.90 mm/s; (d) residual stress, 0.50 mm/s; (e) residual stress, 0.70 mm/s; (f) residual stress, 0.90 mm/s
Fig.6  Simulation results of equivalent plastic strain and residual stresses on the cross section of the cold rolled expansion GCr15 bearing ring under different feed rates (a) equivalent plastic strain, 0.50 mm/s; (b) equivalent plastic strain, 0.70 mm/s; (c) equivalent plastic strain, 0.90 mm/s; (d) residual stress, 0.50 mm/s; (e) residual stress, 0.70 mm/s; (f) residual stress, 0.90 mm/s
Fig.7  Residual stress at each measurement point sho-wn in Fig.4 of the cold rolled expansion GCr15 bearing ring under different feed rates
Fig.8  Microstructure at various positions of GCr15 bearing ring before and after cold rolling expansion (a) before cold rolling expansion; (b) core region between points 2 and 5 shown in Fig.4; (c~h) points 1, 2, 3, 4, 5 and 6 shown in Fig.4
Fig.9  Statistics on the size and distribution of carbides at various positions of GCr15 bearing rings before and after cold rolling expansion (a) before cold rolling expansion; (b) core region between points 2 and 5 shown in Fig.4; (c~h) points 1, 2, 3, 4, 5 and 6 shown in Fig.4
Fig.10  Hardness at different positions of the cold rolled expansion GCr15 bearing ring (a) points 1~6 in Fig.4; (b) radial hardness distribution from the outer to the inner surface starting from points 1, 2 and 3 in Fig.4
Fig.11  Schematic diagram of carbide distribution in different regions of the cold rolled expansion GCr15 bearing ring
Fig.12  Schematic diagram of residual stress formation in the cold rolled expansion GCr15 bearing ring
1 Zhang X F, Li Z, Cui X. Numerical simulation on heat treatment deformation of GCr15 bearing rings [J]. Bearing, 2020, (11): 45
张学飞, 李 卓, 崔 晓. GCr15轴承套圈热处理变形数值模拟 [J]. 轴承, 2020, (11): 45
2 Zhang Y J, Min Y A, Liu X J, et al. Microstructure distribution characteristics and carbide homogeneity of GCr15 bearing ring [J]. Heat Treat. Met., 2019, 44(12): 6
张艳君, 闵永安, 刘湘江 等. GCr15轴承套圈组织分布特点及碳化物均匀性 [J]. 金属热处理, 2019, 44(12): 6
3 Liu Z H, Li Y H, Liu Y, et al. Carbide evolution behavior of GCr15 bearing steel during aging process [J]. Chin. J. Mater. Res., 2024, 38(2): 130
doi: 10.11901/1005.3093.2023.169
刘震寰, 李勇翰, 刘 洋 等. GCr15轴承钢时效过程碳化物的演化行为 [J]. 材料研究学报, 2024, 38(2): 130
doi: 10.11901/1005.3093.2023.169
4 Lu B H, Wei W T, Mao H J, et al. Effect of cold ring rolling on the wear resistance of GCr15 bearing steel after quenching and tempering [J]. Metals, 2019, 9(6): 647
5 Yang Z H, Lu X H, Lan J, et al. Research progress in multi-scale numerical simulation of ring rolling [J]. J. Plast. Eng., 2022, 29(3): 1
杨智皓, 路晓辉, 兰 箭 等. 环件轧制多尺度数值模拟研究进展 [J]. 塑性工程学报, 2022, 29(3): 1
doi: 10.3969/j.issn.1007-2012.2022.03.001
6 Hua L, Qian D S. Ring rolling forming theory and technology for bearing [J]. J. Mech. Eng., 2014, 50(16): 70
华 林, 钱东升. 轴承环轧制成形理论和技术 [J]. 机械工程学报, 2014, 50(16): 70
7 Liu Y Y. Finite element numerical simulation of large L-shape ring rolling process [D]. Dalian: Dalian University of Technology, 2022
刘永云. 大型L形截面环件轧制过程的有限元数值模拟 [D]. 大连: 大连理工大学, 2022
8 Hua L, Qian D S, Pan L B. Deformation behaviors and conditions in L-section profile cold ring rolling [J]. J. Mater. Process. Technol., 2009, 209(11): 5087
9 Luo Z, Hua L, Zhou Y Q, et al. Simulation of ring rolling process using explicit finite element method [J]. J. Plast. Eng., 2004, 11(1): 68
罗 洲, 华 林, 周勇强 等. 环件轧制过程的显式有限元模拟分析 [J]. 塑性工程学报, 2004, 11(1): 68
10 Wang X K, Dong J, Hua L, et al. Visual measurement method of geometric state of hot ring rolling process based on deep learning [J]. J. Plast. Eng., 2022, 29(11): 8
汪小凯, 董 杰, 华 林 等. 基于深度学习的热态环件轧制过程几何状态视觉测量方法 [J]. 塑性工程学报, 2022, 29(11): 8
doi: 10.3969/j.issn.1007-2012.2022.11.002
11 Yu B, Luo X G, Zhang H T, et al. Relevant analysis of residual stress of cold rolling bearing ring and residual stress [J]. J. Jiamusi Univ. (Nat. Sci. Ed.), 2019, 37(1): 86
俞 蓓, 罗贤国, 张海涛 等. 冷辗压轴承环残余应力与淬回火变形的相关性探析 [J]. 佳木斯大学学报(自然科学版), 2019, 37(1): 86
12 Lan J, Feng S G, Hua L. The residual stress of the cold rolled bearing race [J]. Procedia Eng., 2017, 207: 1254
13 Xu J, Hu H. Research of evolution law of bearing ring cold-rolled residual stress under diverse deflection [J]. J. Wuhan Tech. Coll. Commun., 2018, 20(1): 95
许 杰, 胡 号. 不同变形量下轴承套圈冷轧残余应力演化规律研究 [J]. 武汉交通职业学院学报, 2018, 20(1): 95
14 Ryttberg K, Wedel M K, Recina V, et al. The effect of cold ring rolling on the evolution of microstructure and texture in 100Cr6 steel [J]. Mater. Sci. Eng., 2010, 527A(9) : 2431
15 Deng S, Hua L, Shi D. Effect of cold rolling on plastic deformation and microstructure of bearing ring [J]. Mater. Sci. Technol., 2017, 33(8): 984
16 Wei W T, Qin P X, Deng S. Influence of the intermediate annealing on deformation ability of the cold rolled ring [J]. Adv. Mater. Res., 2014, 3016(893-893): 644
17 Hua L, Qian D S, Pan L B. Analysis of plastic penetration in process of groove ball-section ring rolling [J]. J. Mech. Sci. Technol., 2008, 22(7): 1374
18 Zuo Z J. Study on deformation laws and forming process simulation for cold ring rolling [D]. Wuhan: Wuhan University of Technology, 2006
左治江. 环件冷辗扩变形规律和工艺模拟研究 [D]. 武汉: 武汉理工大学, 2006
19 Wei W T, Wu M. Effect of annealing cooling rate on microstructure and mechanical property of 100Cr6 steel ring manufactured by cold ring rolling process [J]. J. Cent. South Univ., 2014, 21(1): 14
20 Lu B H, Hua L, Han X H, et al. Microstructure evolution of GCr15 in cold ring rolling and following heat treatment [J]. Mater. Sci. Technol., 2016, 32(16): 1702
21 Deng S, Qian D S. Grain refinement-plastic deformation-texture of bearing ring blank in cold ring rolling [J]. J. Mech. Sci. Technol., 2017, 31(6): 2965
[1] WANG Xiaofeng, TAN Wei, FENG Guangming, LIU Jibo, LIU Xianbin, LU Han. Effect of Fe-rich Phase on Mechanical Properties of Al-Mg-Si Alloy[J]. 材料研究学报, 2024, 38(9): 701-710.
[2] SHAO Xia, BAO Mengfan, CHEN Shijie, LIN Na, TAN Jie, MAO Aiqin. Preparation and Lithium Storage Performance of Spinel-type Cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 High-entropy Oxide[J]. 材料研究学报, 2024, 38(9): 680-690.
[3] CEN Yaodong, JI Chunjiao, BAO Xirong, WANG Xiaodong, CHEN Lin, DONG Rui. Stress-Strain Field at the Fatigue Crack Tip of Pearlite Heavy Rail Steel[J]. 材料研究学报, 2024, 38(9): 711-720.
[4] YIN Yifeng, LU Zhengguan, XU Lei, WU Jie. Hot Isostatic Pressing of GH4099 Alloy Powders and Preparation of Thin-walled Cylinders[J]. 材料研究学报, 2024, 38(9): 669-679.
[5] LI Peiyue, ZHANG Minghui, SUN Wentao, BAO Zhihao, GAO Qi, WANG Yanzhi, NIU Long. Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy[J]. 材料研究学报, 2024, 38(9): 651-658.
[6] LIU Shuo, ZHANG Peng, WANG Bin, WANG Kaizhong, XU Zikuan, HU Fangzhong, DUAN Qiqiang, ZHANG Zhefeng. Investigations on Strength-Toughness Relationship and Low Temperature Brittleness of High-speed Railway Axle Steel DZ2[J]. 材料研究学报, 2024, 38(8): 561-568.
[7] LIU Qing'ao, ZHANG Weihong, WANG Zhiyuan, SUN Wenru. Low-cycle Fatigue Behavior of a Cast Ni-based Superalloy K4169 at 650oC[J]. 材料研究学报, 2024, 38(8): 621-631.
[8] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[9] LOU Weidong, ZHAO Haidong, WANG Guo. Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber[J]. 材料研究学报, 2024, 38(8): 593-604.
[10] YANG Pu, DENG Hailong, KANG Heming, LIU Jie, KONG Jianhang, SUN Yufan, YU Huan, CHEN Yu. Evaluation of Slip-cleavage Competition Failure Mechanisms for Titanium Alloys Induced by Microstructure in Very-high-cycle Fatigue Regime[J]. 材料研究学报, 2024, 38(7): 537-548.
[11] PENG Wenfei, HUANG Qiaodong, Moliar Oleksandr, DONG Chaoqi, WANG Xiaofeng. Effect of Heat Treatment on Mechanical Properties of a Novel Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr Alloy[J]. 材料研究学报, 2024, 38(7): 519-528.
[12] WANG Lijia, XU Junyi, HU Li, MIAO Tianhu, ZHAN Sha. Effect of Cryogenic Treatment on Mechanical Behavior of AZ31 Mg Alloy Sheet with Bimodal Non-basal Texture at Room Temperature[J]. 材料研究学报, 2024, 38(7): 499-507.
[13] WANG Jinlong, WANG Huiming, LI Yingju, ZHANG Hongyi, LV Xiaoren. Pore Feature and Cracking Behavior of Cold-sprayed Al-based Composite Coatings under Reciprocating Friction[J]. 材料研究学报, 2024, 38(7): 481-489.
[14] YUAN Xinzhong, WANG Cunjing, YAO Peng, LI Qiong, MA Zhihua, LI Pengfa. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors[J]. 材料研究学报, 2024, 38(7): 529-536.
[15] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
No Suggested Reading articles found!