|
|
Effect of Deformation Rate on Microstructure and Hardness of Cold-rolled GCr15 Steel Bearing Ring |
SU Yong1, LIU Can1, ZHANG Hongwei2, YU Xingfu3( ), HAO Tianci4 |
1.School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China 2.Meteorological Center of Air Traffic Administration in Northeast China, Shenyang 110169, China 3.School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China 4.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China |
|
Cite this article:
SU Yong, LIU Can, ZHANG Hongwei, YU Xingfu, HAO Tianci. Effect of Deformation Rate on Microstructure and Hardness of Cold-rolled GCr15 Steel Bearing Ring. Chinese Journal of Materials Research, 2024, 38(10): 782-790.
|
Abstract Herein, the effect of deformation rate on the residual stress distribution, carbide precipitation behavior and hardness of the cold rolled expanding deep groove ball bearing rings of GCr15 steel were studied by means of microstructure observation, residual stress and mechanical property measurements as well as finite element simulation. According to the finite element simulation with three different feed rates of 0.50, 0.70 and 0.90 mm/s respectively for the cold rolling process, it follows that the mean residual compressive stress on the outer surface of the bearing ring is -170.49 MPa when the feed rate is 0.50 mm/s, which is only 6.49% different from the experimental result of -160.10 MPa, indicating the reliability of the simulation. With the increase of feed rate, the deformation rate of the ring increases, the relative deformation between the core and the surface layer increases, and the residual stress also increases. The carbides in the inner surface layer of the ring are uniformly distributed and fine. The distribution of carbides is the densest and their average size is the smallest and their average size is the smallest in the groove. The hardness of the ring varies along the radial direction, the inner surface has greater hardness than the outer surface, and the groove position has the maximum hardness.
|
Received: 31 May 2024
|
|
Fund: Project of Liaoning Provincial Department of Education(LJKM20220770) |
Corresponding Authors:
YU Xingfu, Tel: 13604072060, E-mail: yuxingfu@163.com
|
1 |
Zhang X F, Li Z, Cui X. Numerical simulation on heat treatment deformation of GCr15 bearing rings [J]. Bearing, 2020, (11): 45
|
|
张学飞, 李 卓, 崔 晓. GCr15轴承套圈热处理变形数值模拟 [J]. 轴承, 2020, (11): 45
|
2 |
Zhang Y J, Min Y A, Liu X J, et al. Microstructure distribution characteristics and carbide homogeneity of GCr15 bearing ring [J]. Heat Treat. Met., 2019, 44(12): 6
|
|
张艳君, 闵永安, 刘湘江 等. GCr15轴承套圈组织分布特点及碳化物均匀性 [J]. 金属热处理, 2019, 44(12): 6
|
3 |
Liu Z H, Li Y H, Liu Y, et al. Carbide evolution behavior of GCr15 bearing steel during aging process [J]. Chin. J. Mater. Res., 2024, 38(2): 130
doi: 10.11901/1005.3093.2023.169
|
|
刘震寰, 李勇翰, 刘 洋 等. GCr15轴承钢时效过程碳化物的演化行为 [J]. 材料研究学报, 2024, 38(2): 130
doi: 10.11901/1005.3093.2023.169
|
4 |
Lu B H, Wei W T, Mao H J, et al. Effect of cold ring rolling on the wear resistance of GCr15 bearing steel after quenching and tempering [J]. Metals, 2019, 9(6): 647
|
5 |
Yang Z H, Lu X H, Lan J, et al. Research progress in multi-scale numerical simulation of ring rolling [J]. J. Plast. Eng., 2022, 29(3): 1
|
|
杨智皓, 路晓辉, 兰 箭 等. 环件轧制多尺度数值模拟研究进展 [J]. 塑性工程学报, 2022, 29(3): 1
doi: 10.3969/j.issn.1007-2012.2022.03.001
|
6 |
Hua L, Qian D S. Ring rolling forming theory and technology for bearing [J]. J. Mech. Eng., 2014, 50(16): 70
|
|
华 林, 钱东升. 轴承环轧制成形理论和技术 [J]. 机械工程学报, 2014, 50(16): 70
|
7 |
Liu Y Y. Finite element numerical simulation of large L-shape ring rolling process [D]. Dalian: Dalian University of Technology, 2022
|
|
刘永云. 大型L形截面环件轧制过程的有限元数值模拟 [D]. 大连: 大连理工大学, 2022
|
8 |
Hua L, Qian D S, Pan L B. Deformation behaviors and conditions in L-section profile cold ring rolling [J]. J. Mater. Process. Technol., 2009, 209(11): 5087
|
9 |
Luo Z, Hua L, Zhou Y Q, et al. Simulation of ring rolling process using explicit finite element method [J]. J. Plast. Eng., 2004, 11(1): 68
|
|
罗 洲, 华 林, 周勇强 等. 环件轧制过程的显式有限元模拟分析 [J]. 塑性工程学报, 2004, 11(1): 68
|
10 |
Wang X K, Dong J, Hua L, et al. Visual measurement method of geometric state of hot ring rolling process based on deep learning [J]. J. Plast. Eng., 2022, 29(11): 8
|
|
汪小凯, 董 杰, 华 林 等. 基于深度学习的热态环件轧制过程几何状态视觉测量方法 [J]. 塑性工程学报, 2022, 29(11): 8
doi: 10.3969/j.issn.1007-2012.2022.11.002
|
11 |
Yu B, Luo X G, Zhang H T, et al. Relevant analysis of residual stress of cold rolling bearing ring and residual stress [J]. J. Jiamusi Univ. (Nat. Sci. Ed.), 2019, 37(1): 86
|
|
俞 蓓, 罗贤国, 张海涛 等. 冷辗压轴承环残余应力与淬回火变形的相关性探析 [J]. 佳木斯大学学报(自然科学版), 2019, 37(1): 86
|
12 |
Lan J, Feng S G, Hua L. The residual stress of the cold rolled bearing race [J]. Procedia Eng., 2017, 207: 1254
|
13 |
Xu J, Hu H. Research of evolution law of bearing ring cold-rolled residual stress under diverse deflection [J]. J. Wuhan Tech. Coll. Commun., 2018, 20(1): 95
|
|
许 杰, 胡 号. 不同变形量下轴承套圈冷轧残余应力演化规律研究 [J]. 武汉交通职业学院学报, 2018, 20(1): 95
|
14 |
Ryttberg K, Wedel M K, Recina V, et al. The effect of cold ring rolling on the evolution of microstructure and texture in 100Cr6 steel [J]. Mater. Sci. Eng., 2010, 527A(9) : 2431
|
15 |
Deng S, Hua L, Shi D. Effect of cold rolling on plastic deformation and microstructure of bearing ring [J]. Mater. Sci. Technol., 2017, 33(8): 984
|
16 |
Wei W T, Qin P X, Deng S. Influence of the intermediate annealing on deformation ability of the cold rolled ring [J]. Adv. Mater. Res., 2014, 3016(893-893): 644
|
17 |
Hua L, Qian D S, Pan L B. Analysis of plastic penetration in process of groove ball-section ring rolling [J]. J. Mech. Sci. Technol., 2008, 22(7): 1374
|
18 |
Zuo Z J. Study on deformation laws and forming process simulation for cold ring rolling [D]. Wuhan: Wuhan University of Technology, 2006
|
|
左治江. 环件冷辗扩变形规律和工艺模拟研究 [D]. 武汉: 武汉理工大学, 2006
|
19 |
Wei W T, Wu M. Effect of annealing cooling rate on microstructure and mechanical property of 100Cr6 steel ring manufactured by cold ring rolling process [J]. J. Cent. South Univ., 2014, 21(1): 14
|
20 |
Lu B H, Hua L, Han X H, et al. Microstructure evolution of GCr15 in cold ring rolling and following heat treatment [J]. Mater. Sci. Technol., 2016, 32(16): 1702
|
21 |
Deng S, Qian D S. Grain refinement-plastic deformation-texture of bearing ring blank in cold ring rolling [J]. J. Mech. Sci. Technol., 2017, 31(6): 2965
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|