Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (9): 680-690    DOI: 10.11901/1005.3093.2023.474
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Lithium Storage Performance of Spinel-type Cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 High-entropy Oxide
SHAO Xia, BAO Mengfan, CHEN Shijie, LIN Na, TAN Jie, MAO Aiqin()
School of Material Science and Engineering, Anhui University of Technology, Maanshan 243002, China
Cite this article: 

SHAO Xia, BAO Mengfan, CHEN Shijie, LIN Na, TAN Jie, MAO Aiqin. Preparation and Lithium Storage Performance of Spinel-type Cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 High-entropy Oxide. Chinese Journal of Materials Research, 2024, 38(9): 680-690.

Download:  HTML  PDF(11960KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High-entropy oxides (HEOs) have attracted widespread attention as the next-generation anode materials for lithium-ion batteries (LIBs) due to their low cost and high theoretical capacity. In this work, for the first time, a series of spinel-type cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 (X = K, Mg, Zn) high-entropy oxide powders as anode materials for LIBs were synthesized via a solution combustion method. The microstructural features and electrochemical performance of the powders were systematically investigated in comparison with cobalt containing powders of (Cr0.2Fe0.2Mn0.2Ni0.2Co0.2)3O4. The results indicate that the prepared high-entropy oxide powders are all single-phase of spinel structures, with a porous reticular morphology and uniform distribution of constituent elements. When used as anode materials for LIBs, cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2Zn0.2)3O4 exhibits excellent lithium storage performance. After 150 cycles at a current density of 200 mA·g-1, its reversible specific capacity is up to 1303 mAh·g-1. Furthermore, after 380 cycles at a high current density of 1000 mA·g-1, the reversible capacity can still reach 1190 mAh·g-1 (both are higher than its theoretical capacity of 908 mAh·g-1). The reasons for the excellent lithium storage performance of 4MZn electrode are: high specific surface area, mesoporous structure, and abundant oxygen vacancies on the surface make it a high conductivity (12.2 S·m-1) and a large pseudo-capacitance contribution rate; At the same time, the addition of active element Zn causes the formation of Li-Zn alloy in the reduction process of 4MZn electrode, thereby increasing its specific capacity. This work provides a new design approach for exploring cobalt free high entropy energy storage materials with low cost and excellent electrochemical performance.

Key words:  metallic materials      spinel structure      high-entropy oxide      Co free anode      lithium-ion battery      pseudo-capacitance     
Received:  21 September 2023     
ZTFLH:  TM912  
Fund: the Key Project of Natural Science Foundation of Anhui Provincial Universities(2023AH051104);Director's Fund for Green Preparation and Surface Technology of Advanced Metal Materials, Ministry of Education(GFST2022ZR08)
Corresponding Authors:  MAO Aiqin, Tel: 13855599146, E-mail: maoaiqinmaq@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.474     OR     https://www.cjmr.org/EN/Y2024/V38/I9/680

Fig.1  XRD patterns of the samples (a) and enlarge patterns (b) and SEM images of the samples ((c) 4MCo, (d) 4MK, (e) 4MMg, (f, g) 4MZn) and (h) EDS images of 4MZn
Fig.2  N2 adsorption-desorption isothermal curves, BJH pore size distribution of the samples (a) 4MCo, (b) 4MK, (c) 4MMg and (d) 4MZn
SamplesBET specific surface area / m2·g-1Pore volume / cm3·g-1Average pore size / nmMost probable pore size / nm
4MCo37.010.1111.822.27
4MK35.930.1010.782.99
4MMg28.170.1521.823.03
4MZn35.880.1212.942.30
Table 1  BET specific surface area, pore volume, average pore size, and most probable pore size of the samples
Fig.3  XPS survey spectra (a) and high resolution XPS (HRXPS) spectra of all elements of the samples (b~g); four probes conductivity (lattice parameter and oxygen vacancies (h) of the samples)
SamplesCr3+/Cr6+Fe2+/Fe3+Mn3+/Mn4+Ni2+/Ni3+Co2+/Co3+
4MCo55.8/44.250.9/49.171.7/28.359.2/40.846.4/53.6
4MK42.3/57.762.8/37.272.5/27.559.2/40.8K+
4MMg60.2/39.853.9/46.167.1/32.952.6/47.4Mg2+
4MZn71.7/28.351.4/48.681.3/18.754.7/45.3Zn2+
Table 2  Ratio of different valence states of the same metal element in the samples
Fig.4  Cycling performance of different current densities (a, c) and rate performance (b); CV curves at 0.1 mV·s-1 from 0.01 to 3.00 V of the electrodes (d) and charge-discharge profiles (e) of the electrodes
MaterialMaterials synthesisC-rate / mA·g-1CycleCapacity / mAh·g-1Ref.
TiO2@Sn3O4Two-step hydrothermal methods6050659[41]
NiFe2O4@NiCo-LDHHydrothermal method300100636.9[40]
NiCo2O4Solution combustion synthesis50100664[39]
Fe3O4Bottom-up self-assembly approach100100867[9]
(FeCoNiCrMn)3O4High-temperature solid state reaction500300402[15]
(CrFeMnNiCo3)3O4Solution combustion synthesis200100574.1[16]
(Zn0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4Solution combustion synthesis2001501303This work
Table 3  Electrochemical performance of recently reported TMOs and HEOs anodes
Fig.5  Nyquist plots of the electrodes (a), ω-1/2-Z′ lines (b), charge/discharge capacity curves during the GITT measurements (c), lithium-ion diffusion coefficients during the charge/discharge process (d) of as-prepared electrodes
Fig.6  CV curves at different scan rates (a), linear relationship between peak current and scan rate (b), the overall current signal (solid red line) and pseudocapacitive current (shaded blue region) at 1 mV·s-1 scan rate (c), Pseudo-capacitive contribution (d) of the eletrodes at different scan rates
1 Zhang J J, Zhang L Y, Wang W, et al. In situ irradiated X-ray photoelectron spectroscopy investigation on electron transfer mechanism in s-scheme photocatalyst [J]. J. Phys. Chem. Lett., 2022, 13(36): 8462
doi: 10.1021/acs.jpclett.2c02125 pmid: 36053788
2 Chen H, Qiu N, Wu B Z, et al. A new spinel high-entropy oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with fast reaction kinetics and excellent stability as an anode material for lithium ion batteries [J]. RSC Adv., 2020, 10(16): 9736
3 Chen T Y, Wang S Y, Kuo C H, et al. In operando synchrotron X-ray studies of a novel spinel (Ni0.2Co0.2Mn0.2Fe0.2Ti0.2)3O4 high-entropy oxide for energy storage applications [J]. J. Mater. Chem., 2020, 8A(41) : 21756
4 Ma L, Lyu S S, Dai Y, et al. Lithium storage properties of NiO/reduced graphene oxide composites derived from different oxidation degrees of graphite oxide [J]. J. Alloys Compd., 2019, 810: 151954
5 Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J]. Energy Environ. Sci., 2014, 7(5): 1597
6 Reddy M V, Yu C, Fan J H, et al. Molten salt synthesis and energy storage studies on CuCo2O4 and CuO·Co3O4 [J]. RSC Advances, 2012, 2(25): 9619
7 Wang L, Zhang G H, Liu Q H, et al. Recent progress in Zn-based anodes for advanced lithium ion batteries [J]. Mater. Chem. Front., 2018, 2(8): 1414
8 Zhang Q B, Wang J X, Xu D G, et al. Facile large-scale synthesis of vertically aligned CuO nanowires on nickel foam: growth mechanism and remarkable electrochemical performance [J]. J. Mater. Chem., 2014, 2A(11) : 3865
9 Lee S H, Yu S H, Lee J E, et al. Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement [J]. Nano Lett., 2013, 13(9): 4249
10 Sarkar A, Djenadic R, Usharani N J, et al. Nanocrystalline multicomponent entropy stabilised transition metal oxides [J]. J. Eur. Ceram. Soc., 2017, 37(2): 747
11 Li S, Peng Z J, Fu X L. Zn0.5Co0.5Mn0.5Fe0.5Al0.5Mg0.5O4 high-entropy oxide with high capacity and ultra-long life for Li-ion battery anodes [J]. J. Adv. Ceram., 2023, 12(1): 59
12 Sarkar A, Velasco L, Wang D, et al. High entropy oxides for reversible energy storage [J]. Nat. Commun., 2018, 9(1): 3400
doi: 10.1038/s41467-018-05774-5 pmid: 30143625
13 Jia Y G, Chen S J, Shao X, et al. Synergetic effect of lattice distortion and oxygen vacancies on high-rate lithium-ion storage in high-entropy perovskite oxides [J]. J. Adv. Ceram., 2023, 12(6): 1214
14 Liu Z Y, Liu Y, Xu Y J, et al. Novel high-entropy oxides for energy storage and conversion: from fundamentals to practical applications [J]. Green Energy Environ., 2023, 8(5): 1341
15 Wang D, Jiang S D, Duan C Q, et al. Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance [J]. J. Alloys Compd., 2020, 844: 156158
16 Liu C, Bi J Q, Xie L L, et al. High entropy spinel oxides (CrFeMnNiCox)3O4 (x = 2, 3, 4) nanoparticles as anode material towards electrochemical properties [J]. J. Energy Storage, 2023, 71: 108211
17 Anh L T, Rai A K, Thi T V, et al. Enhanced electrochemical performance of novel K-doped Co3O4 as the anode material for secondary lithium-ion batteries [J]. J. Mater. Chem., 2014, 2A(19) : 6966
18 Xiao B, Wu G, Wang T D, et al. High entropy oxides (FeNiCr-MnX)3O4 (X = Zn, Mg) as anode materials for lithium ion batteries [J]. Ceram. Int., 2021, 47(24): 33972
doi: 10.1016/j.ceramint.2021.08.303
19 Bérardan D, Franger S, Meena A K, et al. Room temperature lithium superionic conductivity in high entropy oxides [J]. J. Mater. Chem., 2016, 4A(24) : 9536
20 Li L Y, Hu G R, Cao Y B, et al. Effect of grain size of single crystalline cathode material of LiNi0.65Co0.07Mn0.28O2 on its electrochemical performance [J]. Electrochim. Acta, 2022, 435: 141386
21 Duan C Q, Tian K H, Li X L, et al. New spinel high-entropy oxides (FeCoNiCrMnXLi)3O4 (X = Cu, Mg, Zn) as the anode material for lithium-ion batteries [J]. Ceram. Int., 2021, 47(22): 32025
22 Wang X F, Liu G F, Tang C, et al. A novel high entropy perovskite fluoride anode with 3D cubic framework for advanced lithium-ion battery [J]. J. Alloys Compd., 2023, 934: 167889
23 Liu Z W, Li P, Suo G Q, et al. Zero-strain K0.6Mn1F2.7 hollow nanocubes for ultrastable potassium ion storage [J]. Energy Environ. Sci., 2018, 11(10): 3033
24 Biesinger M C, Payne B P, Grosvenor A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J]. Appl. Surf. Sci., 2011, 257(7): 2717
25 Liu H, Luo S H, Yan S X, et al. High-performance α-Fe2O3/C composite anodes for lithium-ion batteries synthesized by hydrothermal carbonization glucose method used pickled iron oxide red as raw material [J]. Composites, 2019, 164B: 576
26 Liu C, Bi J Q, Xie L L, et al. Preparation and electrochemical properties of two novel high entropy spinel oxides (MgTiZnNiFe)3O4 and (CoTiZnNiFe)3O4 by solid state reaction [J]. Mater. Today, 2023, 35: 106315
27 Lin Y F, Sun L, Hu J J, et al. Ti-doped Fe2O3/carbon cloth anode with oxygen vacancies and partial rGO encapsulation for flexible lithium ion batteries [J]. J. Alloys Compd., 2022, 924: 166441
28 Zhang C C, Wang L G, Zhao Y Z, et al. Self-assembly synthesis of graphene oxide double-shell hollow-spheres decorated with Mn3O4 for electrochemical supercapacitors [J]. Carbon, 2016, 107: 100
29 Zhang J B, Zhang L Y, Cheng Y, et al. Construction of oxygen vacancies in δ-MnO2 for promoting low-temperature toluene oxidation [J]. Fuel, 2023, 332: 126104
30 Liu X F, Xing Y Y, Xu K, et al. Kinetically accelerated lithium storage in high-entropy (LiMgCoNiCuZn)O enabled by oxygen vacancies [J]. Small, 2022, 18(18): 2200524
31 Yan L, Zong L S, Zhang Z J, et al. Oxygen vacancies activated porous MnO/graphene submicron needle arrays for high-capacity lithium-ion batteries [J]. Carbon, 2022, 190: 402
32 Wang Y T, Jiang N, Pan D H, et al. Controllable oxygen vacancy SnO2 - x anodes for lithium-ion batteries with high stability [J]. Chem. Eng. J., 2022, 437: 135422
33 Bayraktar D O, Lökçü E, Ozgur C, et al. Effect of synthesis environment on the electrochemical properties of (FeMnCrCoZn)3O4 high‐entropy oxides for Li‐ion batteries [J]. Int. J. Energy Res., 2022, 46: 22124
34 Zhu Y M, Zhang L, Zhao B T, et al. Improving the activity for oxygen evolution reaction by tailoring oxygen defects in double perovskite oxides [J]. Adv. Funct. Mater., 2019, 29(34): 1901783
35 Osenciat N, Bérardan D, Dragoe D, et al. Charge compensation mechanisms in Li‐substituted high‐entropy oxides and influence on Li superionic conductivity [J]. J. Am. Ceram. Soc., 2019, 102(10): 6156
doi: 10.1111/jace.16511
36 Xiang H Z, Xie H X, Chen Y X, et al. Porous spinel-type (Al0.2CoCrFeMnNi)0.58O4- δ high-entropy oxide as a novel high-performance anode material for lithium-ion batteries [J]. J. Mater. Sci., 2021, 56(13): 8127
37 Zhang Y Y, Chen P, Wang Q Y, et al. High‐capacity and kinetically accelerated lithium storage in MoO3 enabled by oxygen vacancies and heterostructure [J]. Adv. Energy Mater., 2021, 11(31): 2101712
38 Kim H, Choi W, Yoon J, et al. Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries [J]. Chem. Rev., 2020, 120(14): 6934
doi: 10.1021/acs.chemrev.9b00618 pmid: 32101429
39 Mahboubi H, Masoudpanah S M, Alamolhoda S, et al. Facile synthesis of spongy NiCo2O4 powders for lithium-ion storage [J]. Sci. Rep., 2023, 13(1): 10228
doi: 10.1038/s41598-023-37315-6 pmid: 37353540
40 Zhu L Y, Han T L, Ding Y Y, et al. A metal-organic-framework derived NiFe2O4@NiCo-LDH nanocube as high-performance lithium-ion battery anode under different temperatures [J]. Appl. Surf. Sci., 2022, 599: 153953
41 Chen X F, Huang Y, Zhang K C, et al. Porous TiO2 nanobelts coated with mixed transition-metal oxides Sn3O4 nanosheets core-shell composites as high-performance anode materials of lithium ion batteries [J]. Electrochim. Acta, 2018, 259: 131
42 Bian W S, Li H J, Zhao Z X, et al. Entropy stabilization effect and oxygen vacancy in spinel high-entropy oxide promoting sodium ion storage [J]. Electrochim. Acta, 2023, 447: 142157
43 Wu Y Z, Meng J S, Li Q, et al. Interface-modulated fabrication of hierarchical yolk-shell Co3O4/C dodecahedrons as stable anodes for lithium and sodium storage [J]. Nano Res., 2017, 10(7): 2364
44 Xiao B, Wu G, Wang T D, et al. High-entropy oxides as advanced anode materials for long-life lithium-ion Batteries [J]. Nano Energy, 2022, 95: 106962
45 Han X, Meng Q, Wan X, et al. Intercalation pseudocapacitive electrochemistry of Nb-based oxides for fast charging of lithium-ion batteries [J]. Nano Energy, 2021, 81: 105635
[1] LI Peiyue, ZHANG Minghui, SUN Wentao, BAO Zhihao, GAO Qi, WANG Yanzhi, NIU Long. Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy[J]. 材料研究学报, 2024, 38(9): 651-658.
[2] YIN Yifeng, LU Zhengguan, XU Lei, WU Jie. Hot Isostatic Pressing of GH4099 Alloy Powders and Preparation of Thin-walled Cylinders[J]. 材料研究学报, 2024, 38(9): 669-679.
[3] WANG Xiaofeng, TAN Wei, FENG Guangming, LIU Jibo, LIU Xianbin, LU Han. Effect of Fe-rich Phase on Mechanical Properties of Al-Mg-Si Alloy[J]. 材料研究学报, 2024, 38(9): 701-710.
[4] CEN Yaodong, JI Chunjiao, BAO Xirong, WANG Xiaodong, CHEN Lin, DONG Rui. Stress-Strain Field at the Fatigue Crack Tip of Pearlite Heavy Rail Steel[J]. 材料研究学报, 2024, 38(9): 711-720.
[5] LIU Qing'ao, ZHANG Weihong, WANG Zhiyuan, SUN Wenru. Low-cycle Fatigue Behavior of a Cast Ni-based Superalloy K4169 at 650oC[J]. 材料研究学报, 2024, 38(8): 621-631.
[6] LIU Shuo, ZHANG Peng, WANG Bin, WANG Kaizhong, XU Zikuan, HU Fangzhong, DUAN Qiqiang, ZHANG Zhefeng. Investigations on Strength-Toughness Relationship and Low Temperature Brittleness of High-speed Railway Axle Steel DZ2[J]. 材料研究学报, 2024, 38(8): 561-568.
[7] LOU Weidong, ZHAO Haidong, WANG Guo. Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber[J]. 材料研究学报, 2024, 38(8): 593-604.
[8] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[9] YUAN Xinzhong, WANG Cunjing, YAO Peng, LI Qiong, MA Zhihua, LI Pengfa. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors[J]. 材料研究学报, 2024, 38(7): 529-536.
[10] PENG Wenfei, HUANG Qiaodong, Moliar Oleksandr, DONG Chaoqi, WANG Xiaofeng. Effect of Heat Treatment on Mechanical Properties of a Novel Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr Alloy[J]. 材料研究学报, 2024, 38(7): 519-528.
[11] WANG Lijia, XU Junyi, HU Li, MIAO Tianhu, ZHAN Sha. Effect of Cryogenic Treatment on Mechanical Behavior of AZ31 Mg Alloy Sheet with Bimodal Non-basal Texture at Room Temperature[J]. 材料研究学报, 2024, 38(7): 499-507.
[12] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
[13] WANG Jinlong, WANG Huiming, LI Yingju, ZHANG Hongyi, LV Xiaoren. Pore Feature and Cracking Behavior of Cold-sprayed Al-based Composite Coatings under Reciprocating Friction[J]. 材料研究学报, 2024, 38(7): 481-489.
[14] YANG Pu, DENG Hailong, KANG Heming, LIU Jie, KONG Jianhang, SUN Yufan, YU Huan, CHEN Yu. Evaluation of Slip-cleavage Competition Failure Mechanisms for Titanium Alloys Induced by Microstructure in Very-high-cycle Fatigue Regime[J]. 材料研究学报, 2024, 38(7): 537-548.
[15] WU Qianfang, HE Qun, CHANG Bing, QUAN Yuxin, HU Jingwen, LI Saisai, CAO Yingnan. Preparation and Neutron Shielding Properties of Fiberglass Based Thermal Insulating Porous Ceramics[J]. 材料研究学报, 2024, 38(6): 471-480.
No Suggested Reading articles found!