Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (9): 701-710    DOI: 10.11901/1005.3093.2023.417
ARTICLES Current Issue | Archive | Adv Search |
Effect of Fe-rich Phase on Mechanical Properties of Al-Mg-Si Alloy
WANG Xiaofeng1,2,3(), TAN Wei1, FENG Guangming2, LIU Jibo4, LIU Xianbin4, LU Han4
1 School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
2 Ningbo LK Technology Co. Ltd., Ningbo 315800, China
3 Key Laboratory of Impact and Safety Engineering, Ministry of Education, Ningbo University, Ningbo 315211, China
4 Ningbo Zhanci New Material Co. Ltd., Ningbo 315338, China
Cite this article: 

WANG Xiaofeng, TAN Wei, FENG Guangming, LIU Jibo, LIU Xianbin, LU Han. Effect of Fe-rich Phase on Mechanical Properties of Al-Mg-Si Alloy. Chinese Journal of Materials Research, 2024, 38(9): 701-710.

Download:  HTML  PDF(22646KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Two Al-Mg-Si alloys with different Fe-rich phase contents within a range of low Fe-rich phase content were designed, and the effect of Fe-rich phase on microstructure, texture and mechanical properties of the alloys were studied through microstructure characterization, texture measurement and tensile test. The results show that the shape and size of the Fe-rich phase may undergo continuous changes during thermomechanical processing, especially for the intermediate annealing state, and some coarse particles of Fe-rich phase could become nano-sized; although the introduction of the Fe-rich phase affects the microstructure of the intermediate states slightly during thermomechanical processing, it may be beneficial to efficiently refine the final recrystallization grain structure; Fe-rich phase can affect recrystallization texture and volume fractions, and thus the final weak recrystallization texture may be developed; Fe-rich phase is beneficial to improve yield strength, ultimate tensile strength and plastic strain ratio r, reduce strain hardening exponent n and planar anisotropy coefficient, and keep elongation unchanged. The improvement of properties can be attributed to the fine microstructure and weak texture.

Key words:  metallic materials      Fe-rich phase      Al-Mg-Si alloy      microstructure      texture     
Received:  25 August 2023     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(52005271);the Major Project of Ningbo Science and Technology Innovation 2025(2021Z099, 2023Z005)
Corresponding Authors:  WANG Xiaofeng, Tel: 17858883615, E-mail: wangxiaofeng@nbu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.417     OR     https://www.cjmr.org/EN/Y2024/V38/I9/701

AlloyMgSiCuMnFeAl
ANominal0.80.90.20.10Bal.
Analyzed0.830.920.220.120.03Bal.
BNominal0.81.00.20.150.2Bal.
Analyzed0.821.080.210.160.24Bal.
Table 1  Chemical compositions of the Al-Mg-Si alloys (mass fraction, %)
Fig.1  Schematic of tensile specimen (unit: mm)
Fig.2  As-cast microstructure of Al-Mg-Si alloys (a) optical microscopy (OM) micrograph of alloy A; (b) OM micrograph of alloy B; (c) SEM micrograph of alloy A; (d) SEM micrograph of alloy B; (e~g) EDS analysis of particles
Fig.3  Homogenization microstructure of Al-Mg-Si alloys (a) OM micrograph of alloy A; (b) OM micrograph of alloy B; (c) SEM micrograph of alloy A; (d) SEM micrograph of alloy B; (e~g) EDS analysis of particles
Fig.4  Hot rolling microstructure of Al-Mg-Si alloy sheets (a) OM micrograph of alloy A; (b) OM micrograph of alloy B; (c) SEM micrograph of alloy A; (d) SEM micrograph of alloy B
Fig.5  Microstructure of the intermediate annealed Al-Mg-Si alloy sheets (a) alloy A; (b) alloy B
Fig.6  Microstructure of the intermediate annealed Al-Mg-Si alloy sheets (a) SEM observation of alloy A; (b) SEM observation of alloy B; (c) Scanning Transmission Electron Microscopy (STEM) observation of alloy A; (d) STEM observation of alloy B; (e) EDS analysis of particles
Fig.7  Microstructure of the cold rolled Al-Mg-Si alloy sheets (a) OM observation of alloy A; (b) OM observation of alloy B; (c) SEM observation of alloy A; (d) SEM observation of alloy B
Fig.8  EBSD analysis of the T4P treated alloy sheets (a) grain microstructure of alloy A; (b) grain microstructure of alloy B; (c) grain size distribution of sheet A; (d) grain size distribution of sheet B
Fig.9  Textures of T4P treated Al-Mg-Si alloy sheets (a) sheet A; (b) sheet B
Alloy sheetComponentIntensityVolume fraction / %
ACubeND4.114.1
P2.06.9
Goss3.66.2
BCube3.511.1
Goss2.63.7
Table 2  Volume fractions of recrystallization texture components in alloy sheets A and B
AlloyDirection / (°)rAverage r (r¯)ΔrnAverage nElongation / %Yield strength / MPaUltimate tensile strength / MPa
A00.7250.590.1940.3120.31526.3113237
450.4930.31225.3105224
900.6490.32324.9105223
B00.7000.630.1020.2980.29925.7133269
450.5790.29827.0124255
900.6610.30226.0125253
Table 3  Mechanical properties of the T4P treated alloy sheets
1 Zheng Y Y, Luo B H, Bai Z H. Evolution of microstructure and precipitates of Al-Mg-Si alloy during early aging process [J]. Chin. J. Mater. Res., 2022, 36(12): 926
doi: 10.11901/1005.3093.2021.403
郑亚亚, 罗兵辉, 柏振海. 时效早期Al-Mg-Si合金的组织和析出相的演变 [J]. 材料研究学报, 2022, 36(12): 926
doi: 10.11901/1005.3093.2021.403
2 Zhang R F, Xu J, Feng X M, et al. Effect of the aging process on the yield ratio of 6013 aluminum alloy extruded profile [J]. Chin. J. Eng., 2023, 45(4): 569
张瑞芳, 许 吉, 冯鑫明 等. 时效制度对6013铝合金挤压型材屈强比的影响 [J]. 工程科学学报, 2023, 45(4): 569
3 Yuan Z Y, Lu C, Ding L P, et al. The interactive effect of alloy composition and pre-straining on the precipitation behavior of Al-Mg-Si-Cu alloys [J]. Mater. Sci. Eng., 2022, 849A: 143495
4 Arnoldt A, Semmelrock L, Soukup D, et al. Analysis of second phase particles in metals using deep learning: segmentation of nanoscale dispersoids in 6xxx series aluminum alloys (Al-Mg-Si) [J]. Mater. Charact., 2022, 191: 112138
5 Sidor J, Petrov R H, Kestens L A I. Deformation, recrystallization and plastic anisotropy of asymmetrically rolled aluminum sheets [J]. Mater. Sci. Eng., 2010, 528A: 413
6 Wang X F, Liu H, Tang X B, et al. Influence of asymmetric rolling on the microstructure, texture evolution and mechanical properties of Al-Mg-Si alloy [J]. Mater. Sci. Eng., 2022, 844A: 143154
7 Sidor J, Miroux A, Petrov R, et al. Microstructural and crystallographic aspects of conventional and asymmetric rolling processes [J]. Acta Mater., 2008, 56: 2495
8 Gong W Y, Xie M J, Wu Y, et al. Synergistic strengthening by β″ and η′ phases in Al-Mg-Si-Cu-Zn alloys [J]. Mater. Lett., 2022, 308: 131213
9 Chen J H, Cheng X X, Ding L P, et al. Effect of multi-stage aging on the precipitation strengthening and mechanical properties for an Al-Mg-Si-Ag alloy [J]. Mater. Charact., 2022, 190: 112004
10 Jiang S Y, Wang R H. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al-Mg-Si-Sc alloys [J]. J. Mater. Sci. Technol., 2019, 35: 1354
doi: 10.1016/j.jmst.2019.03.011
11 Zhu S, Li Z H, Yan L Z, et al. Effects of Zn addition on the age hardening behavior and precipitation evolution of an Al-Mg-Si-Cu alloy [J]. Mater. Charact., 2018, 145: 258
12 Liu C H, Zhang X M, Tang J G, et al. Effect of copper on precipitation and baking hardening behavior of Al-Mg-Si alloys [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2289
13 Wang X F, Guo M X, Chapuis A, et al. The dependence of final microstructure, texture evolution and mechanical properties of Al-Mg-Si-Cu alloy sheets on the intermediate annealing [J]. Mater. Sci. Eng., 2015, 633A: 46
14 Wang X F, Guo M X, Cao L Y, et al. Effect of rolling geometry on the mechanical properties, microstructure and recrystallization texture of Al-Mg-Si alloys [J]. Int. J. Miner. Metall. Mater., 2015, 22: 738
15 Wang X F, Guo M X, Peng W F, et al. Relationship among solution heating rate, mechanical properties, microstructure and texture of Al-Mg-Si-Cu alloy [J]. Trans. Nonferrous Met. Soc. China, 2021, 31: 36
16 Trink B, Weißensteiner I, Uggowitzer P J, et al. High Fe content in Al-Mg-Si wrought alloys facilitates excellent mechanical properties [J]. Scr. Mater., 2022, 215: 114701
17 Yu L B, Chen L, Wang H B, et al. Influence of Fe-rich particles on microstructure evolution, texture and mechanical properties of Al-Mg-Si-Cu alloys [J]. Metall. Res. Technol., 2020, 117: 508
18 Kuijpers N C W, Vermolen F J, Vuik C, et al. The dependence of the β-AlFeSi to α-Al(FeMn)Si transformation kinetics in Al-Mg-Si alloys on the alloying elements [J]. Mater. Sci. Eng., 2005, 394A: 9
19 He L Z, Chen Y B, Cui J Z. Effect of homogenization on the microstructures and properties of Al-Mg-Si-Cu alloy [J]. Rare Met. Mater. Eng., 2008, 37(9): 1637
何立子, 陈彦博, 崔建忠. 均匀化对Al-Mg-Si-Cu合金组织和性能的影响 [J]. 稀有金属材料与工程, 2008, 37(9): 1637
20 Engler O. Nucleation and growth during recrystallisation of aluminium alloys investigated by local texture analysis [J]. Mater. Sci. Technol., 1996, 12(10): 859
21 Engler O. On the influence of orientation pinning on growth selection of recrystallisation [J]. Acta Mater., 1998, 46(5): 1555
22 Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. 2nd ed. Oxford: Pergamon, 2004: 230
23 Bennett T A, Petrov R H, Kestens L A I. Effect of particles on texture banding in an aluminium alloy [J]. Scr. Mater., 2010, 62(2): 78
24 Wang X F, Shi T Y, Jiang Z X, et al. Relationship among grain size, texture and mechanical properties of aluminums with different particle distributions [J]. Mater. Sci. Eng., 2019, 753A: 122
25 Morawiec A. On abnormal growth of Goss grains in grain-oriented silicon steel [J]. Scr. Mater., 2011, 64(5): 466
26 Leu D K. Prediction of the limiting drawing ratio and the maximum drawing load in cup-drawing [J]. Int. J. Mach. Tools Manuf., 1997, 37(2): 201
[1] LI Peiyue, ZHANG Minghui, SUN Wentao, BAO Zhihao, GAO Qi, WANG Yanzhi, NIU Long. Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy[J]. 材料研究学报, 2024, 38(9): 651-658.
[2] YIN Yifeng, LU Zhengguan, XU Lei, WU Jie. Hot Isostatic Pressing of GH4099 Alloy Powders and Preparation of Thin-walled Cylinders[J]. 材料研究学报, 2024, 38(9): 669-679.
[3] SHAO Xia, BAO Mengfan, CHEN Shijie, LIN Na, TAN Jie, MAO Aiqin. Preparation and Lithium Storage Performance of Spinel-type Cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 High-entropy Oxide[J]. 材料研究学报, 2024, 38(9): 680-690.
[4] CEN Yaodong, JI Chunjiao, BAO Xirong, WANG Xiaodong, CHEN Lin, DONG Rui. Stress-Strain Field at the Fatigue Crack Tip of Pearlite Heavy Rail Steel[J]. 材料研究学报, 2024, 38(9): 711-720.
[5] LIU Qing'ao, ZHANG Weihong, WANG Zhiyuan, SUN Wenru. Low-cycle Fatigue Behavior of a Cast Ni-based Superalloy K4169 at 650oC[J]. 材料研究学报, 2024, 38(8): 621-631.
[6] LIU Shuo, ZHANG Peng, WANG Bin, WANG Kaizhong, XU Zikuan, HU Fangzhong, DUAN Qiqiang, ZHANG Zhefeng. Investigations on Strength-Toughness Relationship and Low Temperature Brittleness of High-speed Railway Axle Steel DZ2[J]. 材料研究学报, 2024, 38(8): 561-568.
[7] LOU Weidong, ZHAO Haidong, WANG Guo. Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber[J]. 材料研究学报, 2024, 38(8): 593-604.
[8] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[9] YUAN Xinzhong, WANG Cunjing, YAO Peng, LI Qiong, MA Zhihua, LI Pengfa. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors[J]. 材料研究学报, 2024, 38(7): 529-536.
[10] PENG Wenfei, HUANG Qiaodong, Moliar Oleksandr, DONG Chaoqi, WANG Xiaofeng. Effect of Heat Treatment on Mechanical Properties of a Novel Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr Alloy[J]. 材料研究学报, 2024, 38(7): 519-528.
[11] WANG Lijia, XU Junyi, HU Li, MIAO Tianhu, ZHAN Sha. Effect of Cryogenic Treatment on Mechanical Behavior of AZ31 Mg Alloy Sheet with Bimodal Non-basal Texture at Room Temperature[J]. 材料研究学报, 2024, 38(7): 499-507.
[12] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
[13] WANG Jinlong, WANG Huiming, LI Yingju, ZHANG Hongyi, LV Xiaoren. Pore Feature and Cracking Behavior of Cold-sprayed Al-based Composite Coatings under Reciprocating Friction[J]. 材料研究学报, 2024, 38(7): 481-489.
[14] YANG Pu, DENG Hailong, KANG Heming, LIU Jie, KONG Jianhang, SUN Yufan, YU Huan, CHEN Yu. Evaluation of Slip-cleavage Competition Failure Mechanisms for Titanium Alloys Induced by Microstructure in Very-high-cycle Fatigue Regime[J]. 材料研究学报, 2024, 38(7): 537-548.
[15] WU Qianfang, HE Qun, CHANG Bing, QUAN Yuxin, HU Jingwen, LI Saisai, CAO Yingnan. Preparation and Neutron Shielding Properties of Fiberglass Based Thermal Insulating Porous Ceramics[J]. 材料研究学报, 2024, 38(6): 471-480.
No Suggested Reading articles found!