Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (8): 561-568    DOI: 10.11901/1005.3093.2023.441
ARTICLES Current Issue | Archive | Adv Search |
Investigations on Strength-Toughness Relationship and Low Temperature Brittleness of High-speed Railway Axle Steel DZ2
LIU Shuo1,2, ZHANG Peng1,2(), WANG Bin1,2, WANG Kaizhong3, XU Zikuan1, HU Fangzhong3, DUAN Qiqiang1, ZHANG Zhefeng1,2
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Technology Center, Ma'anshan Iron and Steel Co., Ltd., Ma'anshan 243000, China
Cite this article: 

LIU Shuo, ZHANG Peng, WANG Bin, WANG Kaizhong, XU Zikuan, HU Fangzhong, DUAN Qiqiang, ZHANG Zhefeng. Investigations on Strength-Toughness Relationship and Low Temperature Brittleness of High-speed Railway Axle Steel DZ2. Chinese Journal of Materials Research, 2024, 38(8): 561-568.

Download:  HTML  PDF(12601KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Impact toughness and its low-temperature transformation are key indicators of high-speed railway axle materials, which are closely related to the microstructure of the material. The embrittlement degree of materials with different microstructures at low temperatures also varies. Aiming to find a way to optmize the strength-toughness relationship of the relevant steel, the effect of adjusting the tempering temperature on the strength-toughness relationship of DZ2 steel, which was newly designed and developed at home for high-speed railway axle, was studied via tensile tests, room- and low-temperature impact tests, as well as observation and analysis of the microstructure evolution of the steel. Then the performance changes of the steel during the tempering treatment process were explained. The results indicate that as the tempering temperature increases, the tensile strength gradually decreases from 1357 MPa to 761 MPa, the elongation after fracture increases from 11.7% to 28.4%, the room temperature impact energy gradually increases from 34.3 J to 98.7 J, and the low temperature impact energy gradually increases from 24 J to 90.3 J. However, the impact of temperature reduction on the impact energy gradually weakens, the minimum impact energy decrease percentage of low-temperature is 8%. The transformation trend of these properties is closely related to the micro-scale deformation mechanism changes caused by the gradual spheroidization of carbides. It can be concluded from the comprehensive analysis that, while meeting the requirements of room temperature mechanical performance standards, adjusting the tempering temperature can improve the low-temperature impact toughness of the axle steel, to meet the needs of further high-speed railway speed increase and safe operation in harsh environments.

Key words:  metallic materials      axle steel DZ2      tempering treatment      tensile strength      impact energy      low-temperature brittleness     
Received:  06 September 2023     
ZTFLH:  TG142.1  
Fund: National Key Research and Development Program of China(2022YFB3705203)
Corresponding Authors:  ZHANG Peng, Tel: 18624094832, E-mail: pengzhang@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.441     OR     https://www.cjmr.org/EN/Y2024/V38/I8/561

ElementCSiMnPSCrNiMoVAlCu
Content0.24~0.320.20~0.400.60~0.80≤ 0.010≤ 0.0100.90~1.200.50~1.500.20~0.30≤ 0.060.010~0.040≤ 0.20
Table 1  Chemical composition of the high-speed railway axle steel DZ2 (mass fraction, %)
Fig.1  Metallographic structure of DZ2 steel tempering at different tempering temperatures (a) 430oC; (b) 500oC; (c) 560oC; (d) 630oC; (e) 700oC
Fig.2  TEM images of microstructure and carbide morphology of DZ2 steel after tempering at different tempering temperatures (a) 430oC; (b) 500oC; (c) 560oC; (d) 630oC; (e, f) 700oC
Fig.3  Relationship between carbide related parameters and tempering temperature in the microstructure of DZ2 steel after tempering at different tempering temperatures: (a) average size of carbide; (b) average spacing of carbides; (c) average aspect ratio of carbides; (d) the ratio of average size to average spacing
Fig.4  TEM microstructure of DZ2 steel after tempering at 630oC (a) and EDS surface scanning results (b) Fe; (c) C; (d) Mo; (e) Cr; (f) V
Tempering temperature430oC500oC560oC630oC700oC
Ultimate tensile strength (UTS) / MPa135712241120898761
Fracture elongation / %11.714.017.020.728.4
Room temperature impact energy / J34.352.355.79098.7
Low temperature impact energy / J2439.743.371.390.3
Table 2  Tensile and impact properties of specimens after tempering heat treatment at different tempering temperatures
Fig.5  Tensile test results of DZ2 steel after tempering at different tempering temperatures (TT) (a) engineering stress-strain curve; (b) the statistical results of static toughness before UTS vary with the tempering temperature
Fig.6  Relationship between impact energy and tempering temperature (a) 20oC room temperature impact energy; (b) -40oC low temperature impact energy
Fig.7  Relationship between the impact energy decrease percentage of low-temperature and tempering temperature
1 Hirakawa K, Toyama K, Kubota M. The analysis and prevention of failure in railway axles [J]. Int. J. Fatigue, 1998, 20(2): 135
2 Zerbst U, Beretta S, Köhler G, et al. Safe life and damage tolerance aspects of railway axles-A review [J]. Eng. Fract. Mech., 2013, 98: 214
3 Maglio M, Pieringer A, Nielsen J C O, et al. Wheel-rail impact loads and axle bending stress simulated for generic distributions and shapes of discrete wheel tread damage [J]. J. Sound. Vib., 2021, 502: 116085
4 Fintová S, Pokorný P, Fajkoš R, et al. EA4T railway axle steel fatigue behavior under very high-frequency fatigue loading [J]. Eng. Fail. Anal., 2020, 115: 104668
5 Wu S P, Wang D P, Di X J, et al. Strength-toughness improvement of martensite-austenite dual phase deposited metals after austenite reversed treatment with short holding time [J]. Mater. Sci. Eng., 2019, 755A: 57
6 Goritskii V M, Shneiderov G R, Goritskii O V. Effect of impact toughness anisotropy on brittle fracture resistance characteristics of high-strength steels subjected to thermomechanical treatment [J]. Metallurgist, 2020, 64(5-6): 425
7 Song R, Ponge D, Raabe D, et al. Overview of processing, microstructure and mechanical properties of ultrafine grained bcc ste-els [J]. Mater. Sci. Eng., 2006, 441A(1-2) : 1
8 Schneider A S, Kaufmann D, Clark B G, et al. Correlation between critical temperature and strength of small-scale bcc pillars [J]. Phys. Rev. Lett., 2009, 103(10): 105501
9 Mrovec M, Gröger R, Bailey A G, et al. Bond-order potential for simulations of extended defects in tungsten [J]. Phys. Rev., 2007, 75B(10) : 104119
10 Chernov V M, Kardashev B K, Moroz K A. Low-temperature embrittlement and fracture of metals with different crystal lattices-Dislocation mechanisms [J]. Nucl. Mater. Energy, 2016, 9: 496
11 Song G, Aragon N K, Ryu I, et al. Low-temperature failure mechanism of [001] niobium micropillars under uniaxial tension [J]. J. Mater. Res., 2021, 36(12): 2371
12 Wang J, Li W, Zhu X D, et al. Effect of martensite morphology and volume fraction on the low-temperature impact toughness of dual-phase steels [J]. Mater. Sci. Eng., 2022, 832A: 142424
13 Cao W Q, Zhang M D, Huang C X, et al. Ultrahigh charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels [J]. Sci. Rep., 2017, 7(1): 41459
14 Hanamura T, Yin F, Nagai K. Ductile-brittle transition temperature of ultrafine ferrite/cementite microstructure in a low carbon steel controlled by effective grain size [J]. ISIJ Int., 2004, 44(3):610
15 Wu Y, Yin H X, Meng Y, et al. High cycle fatigue properties of high speed axle materials at low temperature [J]. Trans. Mater. Heat. Treat., 2019, 40(4): 54
吴 毅, 尹鸿祥, 孟 扬 等. 高速列车车轴材料的低温高周疲劳性能 [J]. 材料热处理学报, 2019, 40(4): 54
16 Ding C C, Zhao M D, Li Z D, et al. Effect of quenching temperature on microstructure and properties of high-speed axle steel [J]. Trans. Mater. Heat Treat., 2018, 39(12): 49
丁灿灿, 赵敏丹, 李昭东 等. 淬火温度对高铁车轴用钢组织及性能的影响 [J]. 材料热处理学报, 2018, 39(12): 49
doi: 10.13289/j.issn.1009-6264.2018-0311
17 Wang K Z, Hu F Z, Chen S J, et al. Effect of tempering process on microstructure and mechanical properties of DZ2 axle steel for high speed train [J]. Hot Work. Technol., 2019, 48(16): 162, 168
汪开忠, 胡芳忠, 陈世杰 等. 回火工艺对高速列车用DZ2车轴钢组织及力学性能的影响 [J]. 热加工工艺, 2019, 48(16): 162, 168
18 Zou J, Lei M, Wu G, et al. Low temperature toughness of high speed and over loaded trains axle steel EA4T [J]. Foundry Technol., 2016, 37(4): 653, 665
邹 静, 雷 旻, 吴 刚 等. 高速重载列车车轴用钢EA4T的低温韧度 [J]. 铸造技术, 2016, 37(4): 653, 665
19 Xue Z F, Zheng Y, Zhao X L, et al. Research on low temperature performance of high speed EA4T axle steel [J]. Mech. Eng. Automat., 2021, (6): 114
薛振峰, 郑 毅, 赵兴龙 等. 高速EA4T车轴钢低温性能研究 [J]. 机械工程与自动化, 2021, (6): 114
20 Shang Z X, Ding J, Fan C, et al. Tailoring the strength and ductility of T91 steel by partial tempering treatment [J]. Acta Mater., 2019, 169: 209
doi: 10.1016/j.actamat.2019.02.043
21 Janovec J, Vyrostkova A, Svoboda M. Influence of tempering temperature on stability of carbide phases in 2.6Cr-0.7Mo-0.3V steel with various carbon content [J]. Metall. Mater. Trans., 1994, 25A(2) : 267
22 Zhao S, Song R B, Zhang Y C, et al. Effect of precipitation-induced element partitioning during tempering on mechanical properties of hot-rolled 3Mn steel after intercritical annealing [J]. Mater. Charact., 2023, 205: 113251
23 Zorgani M, Garcia-mateo C, Jahazi M. Microstructural evolution during tempering of an ausformed carbide-free low temperature bainitic steel [J]. Mater. Des., 2021, 210: 110082
24 Brackmann L, Wingender D, Weber S, et al. Influence of hard phase size and spacing on the fatigue crack propagation in tool steels—Numerical simulation and experimental validation [J]. Fatigue Fract. Eng. Mater. Struct., 2023, 46: 3872
25 Zhou T, Prasath Babu R, Hou Z Y, et al. Precipitation of multiple carbides in martensitic CrMoV steels-experimental analysis and exploration of alloying strategy through thermodynamic calculations [J]. Materialia, 2020, 9: 100630
26 Ter Haar G M, Becker T H. Low temperature stress relief and martensitic decomposition in selective laser melting produced Ti6Al4V [J]. Mater. Des. Process. Commun., 2021, 3(1): e138
27 Gil Mur F X, Rodríguez D, Planell J A. Influence of tempering temperature and time on the α'-Ti-6Al-4V martensite [J]. J. Alloys Compd., 1996, 234(2): 287
28 An F C, Wang J J, Zhao S X, et al. Tailoring cementite precipitation and mechanical properties of quenched and tempered steel by nickel partitioning between cementite and ferrite [J]. Mater. Sci. Eng., 2021, 802A: 140686
29 Yong Q L. Second Phase in Steel Materials [M]. Beijing: Metallurgical Industry Press, 2006
雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006
30 Gao J W, Yu M H, Liao D, et al. Foreign object damage tolerance and fatigue analysis of induction hardened S38C axles [J]. Mater. Des., 2021, 202: 109488
31 Kasvayee K A, Ghassemali E, Salomonsson K, et al. Strain localization and crack formation effects on stress-strain response of ductile iron [J]. Mater. Sci. Eng., 2017, 702A: 265
32 Deillon L, Fornabaio M, Zagar G, et al. Processing and micro-mechanical characterization of multi-component transition MC carbides in iron [J]. J. Eur. Ceram. Soc., 2021, 41(7): 3937
[1] LIU Qing'ao, ZHANG Weihong, WANG Zhiyuan, SUN Wenru. Low-cycle Fatigue Behavior of a Cast Ni-based Superalloy K4169 at 650oC[J]. 材料研究学报, 2024, 38(8): 621-631.
[2] LOU Weidong, ZHAO Haidong, WANG Guo. Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber[J]. 材料研究学报, 2024, 38(8): 593-604.
[3] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[4] YUAN Xinzhong, WANG Cunjing, YAO Peng, LI Qiong, MA Zhihua, LI Pengfa. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors[J]. 材料研究学报, 2024, 38(7): 529-536.
[5] PENG Wenfei, HUANG Qiaodong, Moliar Oleksandr, DONG Chaoqi, WANG Xiaofeng. Effect of Heat Treatment on Mechanical Properties of a Novel Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr Alloy[J]. 材料研究学报, 2024, 38(7): 519-528.
[6] WANG Lijia, XU Junyi, HU Li, MIAO Tianhu, ZHAN Sha. Effect of Cryogenic Treatment on Mechanical Behavior of AZ31 Mg Alloy Sheet with Bimodal Non-basal Texture at Room Temperature[J]. 材料研究学报, 2024, 38(7): 499-507.
[7] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
[8] WANG Jinlong, WANG Huiming, LI Yingju, ZHANG Hongyi, LV Xiaoren. Pore Feature and Cracking Behavior of Cold-sprayed Al-based Composite Coatings under Reciprocating Friction[J]. 材料研究学报, 2024, 38(7): 481-489.
[9] YANG Pu, DENG Hailong, KANG Heming, LIU Jie, KONG Jianhang, SUN Yufan, YU Huan, CHEN Yu. Evaluation of Slip-cleavage Competition Failure Mechanisms for Titanium Alloys Induced by Microstructure in Very-high-cycle Fatigue Regime[J]. 材料研究学报, 2024, 38(7): 537-548.
[10] WU Qianfang, HE Qun, CHANG Bing, QUAN Yuxin, HU Jingwen, LI Saisai, CAO Yingnan. Preparation and Neutron Shielding Properties of Fiberglass Based Thermal Insulating Porous Ceramics[J]. 材料研究学报, 2024, 38(6): 471-480.
[11] WANG Jun, WANG Xuanli, LIU Shuang, SONG Rui, SONG Xiwen. Effect of Mn Doping on Microstructure and Thermal Conductivity of (Y0.4Er0.6)3Al5O12 Ceramics Material for Thermal Barrier Coating[J]. 材料研究学报, 2024, 38(6): 463-470.
[12] GUO Zhinan, ZHAO Qiang, LI Shuying, WANG Junli, XU Lin, SHANG Jianpeng, GUO Yong. Preparation and Degradation Performance of Composite Photocatalyst of Two-Dimensional Layered ZnNiAl-LDH/ Cuprous Oxide Particles[J]. 材料研究学报, 2024, 38(6): 423-429.
[13] CUI Yunqiu, NIU Chunjie, LV Jianhua, NI Weiyuan, LIU Dongping, LU Na. Effect of Helium Ions Irradiation at High Temperature on Surface Morphology of Tungsten[J]. 材料研究学报, 2024, 38(6): 437-445.
[14] WANG Wei, CHANG Wenjuan, LV Fanfan, XIE Zelei, YU Chengcheng. Preparation and Tribological Properties of Fluorinated Boron Nitride Nanosheets Water-based Additive[J]. 材料研究学报, 2024, 38(6): 410-422.
[15] TAN Yiling, LI Shichun, SUN Jie. Preparation of Metal-organic Framework Porous Glass agSALEM-2[J]. 材料研究学报, 2024, 38(5): 373-378.
No Suggested Reading articles found!