|
|
Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber |
LOU Weidong, ZHAO Haidong( ), WANG Guo |
National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China |
|
Cite this article:
LOU Weidong, ZHAO Haidong, WANG Guo. Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber. Chinese Journal of Materials Research, 2024, 38(8): 593-604.
|
Abstract The thermal cycling (1000~10000 cycles) testing of H13 steel between molten ADC12 Al-alloy (670~730oC) and spray cooling chamber was conducted in this paper. The microstructure evolution and hardness change of H13 steel were studied against the cycling process, and then, a quantitative model of hardness change was established based on the kinetics of solid phase transformations theory. The results indicate that H13 steel undergoes softening along with the thermal cycling. At the beginning of the cycling, the softening of the matrix is mainly due to the decrease of dislocation density. With the increase of the cycling times, the softening at the middle and late stages was mainly due to the coarsening of carbides, the broadening of martensite lath and the growth of sub-grains. During different cycling tests, increasing the temperature of the molten Al-alloy may accelerate the softening of the matrix. According to the kinetics equation of solid phase transformations, the calculated phase transformation activation energy of the H13 steel is 200.78 kJ/mol, which is similar to the diffusion activation energy of alloy elements Cr, V, and Mo in ferrite, indicating that the softening rate of H13 steel depends on the diffusion of these elements.
|
Received: 07 October 2023
|
|
Fund: Guangdong Province Key Field R&D Program Project(2020B010184002) |
Corresponding Authors:
ZHAO Haidong, Tel: (020)87112948-302, E-mail: hdzhao@scut.edu.cn
|
1 |
Gupta M K, Singhal V. Review on materials for making lightweight vehicles [J]. Mater. Today: Proc., 2022, 56: 868
|
2 |
Liu F, Zhao H D, Chen B, et al. Investigation on microstructure heterogeneity of the HPDC AlSiMgMnCu alloy through 3D electron microscopy [J]. Mater. Des., 2022, 218: 110679
|
3 |
Niu Z C, Liu G Y, Li T, et al. Effect of high pressure die casting on the castability, defects and mechanical properties of aluminium alloys in extra-large thin-wall castings [J]. J. Mater. Process. Technol., 2022, 303: 117525
|
4 |
Liu F, Zheng H T, Zhong Y, et al. Effect of Cu/Mg-containing intermetallics on the mechanical properties of the as-cast HVDC AlSiMgMnCu alloys by SBFSEM at nano-scale [J]. J. Alloys Compd., 2022, 926: 166837
|
5 |
Ding R G, Yang H B, Li S Z, et al. Failure analysis of H13 steel die for high pressure die casting Al alloy [J]. Eng. Failure Anal., 2021, 124: 105330
|
6 |
Jilg A, Seifert T. Temperature dependent cyclic mechanical properties of a hot work steel after time and temperature dependent softening [J]. Mater. Sci. Eng., 2018, 721A: 96
|
7 |
Sun J, Sun T, Sha S, et al. A study of thermal cyclic softening behavior of hot-deformed die steel [J]. Met. Sci. Heat Treat., 2021, 63(1-2): 18
|
8 |
Virtanen E, Van Tyne C J, Levy B S, et al. The tempering parameter for evaluating softening of hot and warm forging die steels [J]. J. Mater. Process. Technol., 2013, 213(8): 1364
|
9 |
Klobčar D, Tušek J, Taljat B. Thermal fatigue of materials for die-casting tooling [J]. Mater. Sci. Eng., 2008, 472A(1-2) : 198
|
10 |
Li S, Wu X C, Li X X, et al. High temperature performance of a Mo-W type hot work die steel of high thermal conductivity [J]. Chin. J. Mater. Res., 2017, 31(1): 32
doi: 10.11901/1005.3093.2016.037
|
|
李 爽, 吴晓春, 黎欣欣 等. 钼钨系高导热率热作模具钢高温性能 [J]. 材料研究学报, 2017, 31(1): 32
|
11 |
Hu X, Li L, Wu X, et al. Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium [J]. Int. J. Fatigue, 2006, 28(3): 175
|
12 |
Medvedeva A, Bergström J, Gunnarsson S, et al. High-temperature properties and microstructural stability of hot-work tool steels [J]. Mater. Sci. Eng., 2009, 523A(1-2) : 39
|
13 |
Zeng Y, Zuo P P, Wu X C, et al. Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13 [J]. Int. J. Miner. Metall. Mater., 2017, 24: 1004
|
14 |
Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbon steel [J]. Acta Mater., 2006, 54(5): 1279
|
15 |
Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels [J]. Mater. Sci. Eng., 2006, 438-440A: 237
|
16 |
Cui Z Q, Qin Y C. Metallography and Heat Treatment. 2nd ed. [M]. Beijing: China Machine Press, 2007: 197
|
|
崔忠圻, 覃耀春. 金属学与热处理 (第2版) [M]. 北京: 机械工业出版社, 2007: 197
|
17 |
Shi Y J, Yu L H, Yu Z P, et al. High temperature stability and thermal fatigue behavior of DM hot working die steel [J]. Chin. J. Mater. Res., 2020, 34(2): 125
doi: 10.11901/1005.3093.2019.339
|
|
施渊吉, 于林惠, 于照鹏 等. 热作模具钢DM的高温稳定性和热疲劳性能 [J]. 材料研究学报, 2020, 34(2): 125
doi: 10.11901/1005.3093.2019.339
|
18 |
Ning A G, Yue S, Gao R, et al. Influence of tempering time on the behavior of large carbides’ coarsening in AISI H13 steel [J]. Metals, 2019, 9(12): 1283
|
19 |
Hu Z Q, Wang K K. Investigation into the thermal stability of a novel hot-work die steel 5CrNiMoVNb [J]. High Temp. Mater. Processes, 2022, 41(1): 353
|
20 |
Liu Q D, Chu Y L, Peng J C, et al. 3D atom probe characterazation of alloy carbides in tempering martenite III. Coarsening [J]. Acta Metall. Sin., 2009, 45(11): 1297
|
|
刘庆冬, 褚于良, 彭剑超 等. 回火马氏体中合金碳化物的3D原子探针表征Ⅲ. 粗化 [J]. 金属学报, 2009, 45(11): 1297
|
21 |
Wang J, Xu Z N, Lu X F. Effect of the quenching and tempering temperatures on the microstructure and mechanical properties of H13 steel [J]. J. Mater. Eng. Perform., 2020, 29: 1849
|
22 |
Klobčar D, Kosec L, Kosec B, et al. Thermo fatigue cracking of die casting dies [J]. Eng. Failure Anal., 2012, 20: 43
|
23 |
Zhang X H, Zeng Y P, Cai W H, et al. Study on the softening mechanism of P91 steel [J]. Mater. Sci. Eng., 2018, 728A: 63
|
24 |
Wang Y L, Song K X, Zhang Y M. High-temperature softening mechanism and kinetic of 4Cr5MoSiV1 steel during tempering [J]. Mater. Res. Express, 2019, 6(9): 096513
|
25 |
Zhang X D, Wang T J, Gong X F, et al. Low cycle fatigue properties, damage mechanism, life prediction and microstructure of MarBN steel: influence of temperature [J]. Int. J. Fatigue, 2021, 144: 106070
|
26 |
Li S C, Guo C Y, Hao L L, et al. In-situ EBSD study of deformation behaviour of 600 MPa grade dual phase steel during uniaxial tensile tests [J]. Mater. Sci. Eng., 2019, 759A: 624
|
27 |
Chen C R, Wang Y, Ou H G, et al. Energy-based approach to thermal fatigue life of tool steels for die casting dies [J]. Int. J. Fatigue, 2016, 92: 166
|
28 |
Lu Y, Ripplinger K, Huang X J, et al. A new fatigue life model for thermally-induced cracking in H13 steel dies for die casting [J]. J. Mater. Process. Technol., 2019, 271: 444
|
29 |
Hauke J, Kossowski T. Comparison of values of pearson's and spearman's correlation coefficients on the same sets of data [J]. Quaest. Geogr., 2011, 30(2): 87
|
30 |
Hu X B. Thermal fatigue behavior of Niobium microalloyed H13 steel [D]. Shanghai: Shanghai University, 2005
|
|
胡心彬. 铌微合金化H13钢的热疲劳行为 [D]. 上海: 上海大学, 2005
|
31 |
Johnson W A, Mehl R F. Reaction kinetics in processes of nucleation and growth [J]. Trans. Am. Inst. Min. Metall. Eng., 1939, 135: 416
|
32 |
Avrami M. Kinetics of phase change. I General theory [J]. J. Chem. Phys., 1939, 7(12): 1103
|
33 |
Avrami M. Kinetics of phase change. II transformation‐time relations for random distribution of nuclei [J]. J. Chem. Phys., 1940, 8(2): 212
|
34 |
Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III [J]. J. Chem. Phys., 1941, 9: 177
|
35 |
Watté P, Van Humbeeck J, Aernoudt E, et al. Strain ageing in heavily drawn eutectoid steel wires [J]. Scr. Mater., 1996, 34: 89
|
36 |
Ning A G, Liu Y, Gao R, et al. Effect of tempering condition on microstructure, mechanical properties and precipitates in AISI H13 steel [J]. JOM, 2021, 73(7): 2194
|
37 |
Wang Z C. Simulation study on thermal cycle, stress and fatigue of aluminum alloy die-casting dies [D]. Guangzhou: South China University of Technology, 2021
|
|
王子超. 铝合金压铸模具热循环、应力与疲劳的模拟研究 [D]. 广州: 华南理工大学, 2021
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|