Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (8): 593-604    DOI: 10.11901/1005.3093.2023.491
ARTICLES Current Issue | Archive | Adv Search |
Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber
LOU Weidong, ZHAO Haidong(), WANG Guo
National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China
Cite this article: 

LOU Weidong, ZHAO Haidong, WANG Guo. Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber. Chinese Journal of Materials Research, 2024, 38(8): 593-604.

Download:  HTML  PDF(28148KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The thermal cycling (1000~10000 cycles) testing of H13 steel between molten ADC12 Al-alloy (670~730oC) and spray cooling chamber was conducted in this paper. The microstructure evolution and hardness change of H13 steel were studied against the cycling process, and then, a quantitative model of hardness change was established based on the kinetics of solid phase transformations theory. The results indicate that H13 steel undergoes softening along with the thermal cycling. At the beginning of the cycling, the softening of the matrix is mainly due to the decrease of dislocation density. With the increase of the cycling times, the softening at the middle and late stages was mainly due to the coarsening of carbides, the broadening of martensite lath and the growth of sub-grains. During different cycling tests, increasing the temperature of the molten Al-alloy may accelerate the softening of the matrix. According to the kinetics equation of solid phase transformations, the calculated phase transformation activation energy of the H13 steel is 200.78 kJ/mol, which is similar to the diffusion activation energy of alloy elements Cr, V, and Mo in ferrite, indicating that the softening rate of H13 steel depends on the diffusion of these elements.

Key words:  metallic materials      H13 steel      thermal cycling      microstructure      hardness      kinetics of phasetransformation     
Received:  07 October 2023     
ZTFLH:  TG142  
Fund: Guangdong Province Key Field R&D Program Project(2020B010184002)
Corresponding Authors:  ZHAO Haidong, Tel: (020)87112948-302, E-mail: hdzhao@scut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.491     OR     https://www.cjmr.org/EN/Y2024/V38/I8/593

ElementsCSiCrMoVMnFe
Content0.401.055.211.391.030.35Bal.
Table 1  Main chemical composition of H13 steel (mass fraction, %)
Fig.1  Shape and geometric dimensions (a) and specimen location (b) of thermal cycling specimen (unit: mm)
Fig.2  Schematic diagram of thermal cycling experimental (a) equipment working principle; (b) actual equipment
Fig.3  Thermal cycling process of the specimen at aluminum melt temperature of 670oC (a) temperature; (b) average equiva-lent stress
Fig.4  SEM microstructure of H13 steel at different experimental parameters
Parameters670oC700oC730oC
1000 cycles98.23±9.2 nm105.78±7.6 nm112.35±5.9 nm
2500 cycles128.57±5.4 nm141.25±4.2 nm149.28±6.2 nm
5000 cycles147.36±4.6 nm161.50±3.3 nm176.30±5.8 nm
10000 cycles163.58±8.2 nm176.32±5.2 nm201.36±4.3 nm
Table 2  Average equivalent diameter of carbides in H13 steel under different parameters
Fig.5  Bright field TEM micrographs of H13 steel during cycling in 670oC ADC12 aluminum melt (a, b) original; (c) 1000 cycles; (d) 2500 cycles; (e) 5000 cycles; (f) 10000 cycles
Fig.6  Bright field images, SAED, and EDS spectrogram of different types of carbides
Fig.7  IPF, misorientation boundaries and KAM maps of H13 (a~c) original, (d~f) 670oC, (g~i) 700oC, (j~l) 730oC. Misorientation boundaries are colored as follows: red, 2°~5°; green, 5°~15°; blue, > 15°
Fig.8  Size distribution of martensite lath block (a) original; (b) 670oC; (c) 700oC; (d) 730oC
Fig.9  EBSD grain boundary map and misorientation angle distributions of H13 steel (a) original; (b) 670oC; (c) 700oC; (d) 730oC
ParametersOriginal5000 cycles
670oC700oC730oC
KAM / (°)0.760.470.460.41
GND / 1014m-211.136.576.385.48
Table 3  GND and KAM results of H13 steel
Fig.10  Microhardness of H13 steel under different experimental parameters (a) cross section gradi-ent hardness; (b) cross section average hardness
Fig.11  Schematic diagram of microstructure evolution of H13 steel at 670oC
Fig.12  Correlation between hardness and microstructure characteristics
Fig.13  Linear fitting of H13during thermal cycling from 670oC to 730oC (a) lnln(1/(1 - τ)) and lnt; (b) lnD and T-1
Avrami index670oC700oC730oC
n0.4450.3890.346
lnD-4.847-4.073-3.414
Table 4  Linear fitting parameters of H13 steel under thermal cycling from 670oC to 730oC
1 Gupta M K, Singhal V. Review on materials for making lightweight vehicles [J]. Mater. Today: Proc., 2022, 56: 868
2 Liu F, Zhao H D, Chen B, et al. Investigation on microstructure heterogeneity of the HPDC AlSiMgMnCu alloy through 3D electron microscopy [J]. Mater. Des., 2022, 218: 110679
3 Niu Z C, Liu G Y, Li T, et al. Effect of high pressure die casting on the castability, defects and mechanical properties of aluminium alloys in extra-large thin-wall castings [J]. J. Mater. Process. Technol., 2022, 303: 117525
4 Liu F, Zheng H T, Zhong Y, et al. Effect of Cu/Mg-containing intermetallics on the mechanical properties of the as-cast HVDC AlSiMgMnCu alloys by SBFSEM at nano-scale [J]. J. Alloys Compd., 2022, 926: 166837
5 Ding R G, Yang H B, Li S Z, et al. Failure analysis of H13 steel die for high pressure die casting Al alloy [J]. Eng. Failure Anal., 2021, 124: 105330
6 Jilg A, Seifert T. Temperature dependent cyclic mechanical properties of a hot work steel after time and temperature dependent softening [J]. Mater. Sci. Eng., 2018, 721A: 96
7 Sun J, Sun T, Sha S, et al. A study of thermal cyclic softening behavior of hot-deformed die steel [J]. Met. Sci. Heat Treat., 2021, 63(1-2): 18
8 Virtanen E, Van Tyne C J, Levy B S, et al. The tempering parameter for evaluating softening of hot and warm forging die steels [J]. J. Mater. Process. Technol., 2013, 213(8): 1364
9 Klobčar D, Tušek J, Taljat B. Thermal fatigue of materials for die-casting tooling [J]. Mater. Sci. Eng., 2008, 472A(1-2) : 198
10 Li S, Wu X C, Li X X, et al. High temperature performance of a Mo-W type hot work die steel of high thermal conductivity [J]. Chin. J. Mater. Res., 2017, 31(1): 32
doi: 10.11901/1005.3093.2016.037
李 爽, 吴晓春, 黎欣欣 等. 钼钨系高导热率热作模具钢高温性能 [J]. 材料研究学报, 2017, 31(1): 32
11 Hu X, Li L, Wu X, et al. Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium [J]. Int. J. Fatigue, 2006, 28(3): 175
12 Medvedeva A, Bergström J, Gunnarsson S, et al. High-temperature properties and microstructural stability of hot-work tool steels [J]. Mater. Sci. Eng., 2009, 523A(1-2) : 39
13 Zeng Y, Zuo P P, Wu X C, et al. Effects of mechanical strain amplitude on the isothermal fatigue behavior of H13 [J]. Int. J. Miner. Metall. Mater., 2017, 24: 1004
14 Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbon steel [J]. Acta Mater., 2006, 54(5): 1279
15 Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels [J]. Mater. Sci. Eng., 2006, 438-440A: 237
16 Cui Z Q, Qin Y C. Metallography and Heat Treatment. 2nd ed. [M]. Beijing: China Machine Press, 2007: 197
崔忠圻, 覃耀春. 金属学与热处理 (第2版) [M]. 北京: 机械工业出版社, 2007: 197
17 Shi Y J, Yu L H, Yu Z P, et al. High temperature stability and thermal fatigue behavior of DM hot working die steel [J]. Chin. J. Mater. Res., 2020, 34(2): 125
doi: 10.11901/1005.3093.2019.339
施渊吉, 于林惠, 于照鹏 等. 热作模具钢DM的高温稳定性和热疲劳性能 [J]. 材料研究学报, 2020, 34(2): 125
doi: 10.11901/1005.3093.2019.339
18 Ning A G, Yue S, Gao R, et al. Influence of tempering time on the behavior of large carbides’ coarsening in AISI H13 steel [J]. Metals, 2019, 9(12): 1283
19 Hu Z Q, Wang K K. Investigation into the thermal stability of a novel hot-work die steel 5CrNiMoVNb [J]. High Temp. Mater. Processes, 2022, 41(1): 353
20 Liu Q D, Chu Y L, Peng J C, et al. 3D atom probe characterazation of alloy carbides in tempering martenite III. Coarsening [J]. Acta Metall. Sin., 2009, 45(11): 1297
刘庆冬, 褚于良, 彭剑超 等. 回火马氏体中合金碳化物的3D原子探针表征Ⅲ. 粗化 [J]. 金属学报, 2009, 45(11): 1297
21 Wang J, Xu Z N, Lu X F. Effect of the quenching and tempering temperatures on the microstructure and mechanical properties of H13 steel [J]. J. Mater. Eng. Perform., 2020, 29: 1849
22 Klobčar D, Kosec L, Kosec B, et al. Thermo fatigue cracking of die casting dies [J]. Eng. Failure Anal., 2012, 20: 43
23 Zhang X H, Zeng Y P, Cai W H, et al. Study on the softening mechanism of P91 steel [J]. Mater. Sci. Eng., 2018, 728A: 63
24 Wang Y L, Song K X, Zhang Y M. High-temperature softening mechanism and kinetic of 4Cr5MoSiV1 steel during tempering [J]. Mater. Res. Express, 2019, 6(9): 096513
25 Zhang X D, Wang T J, Gong X F, et al. Low cycle fatigue properties, damage mechanism, life prediction and microstructure of MarBN steel: influence of temperature [J]. Int. J. Fatigue, 2021, 144: 106070
26 Li S C, Guo C Y, Hao L L, et al. In-situ EBSD study of deformation behaviour of 600 MPa grade dual phase steel during uniaxial tensile tests [J]. Mater. Sci. Eng., 2019, 759A: 624
27 Chen C R, Wang Y, Ou H G, et al. Energy-based approach to thermal fatigue life of tool steels for die casting dies [J]. Int. J. Fatigue, 2016, 92: 166
28 Lu Y, Ripplinger K, Huang X J, et al. A new fatigue life model for thermally-induced cracking in H13 steel dies for die casting [J]. J. Mater. Process. Technol., 2019, 271: 444
29 Hauke J, Kossowski T. Comparison of values of pearson's and spearman's correlation coefficients on the same sets of data [J]. Quaest. Geogr., 2011, 30(2): 87
30 Hu X B. Thermal fatigue behavior of Niobium microalloyed H13 steel [D]. Shanghai: Shanghai University, 2005
胡心彬. 铌微合金化H13钢的热疲劳行为 [D]. 上海: 上海大学, 2005
31 Johnson W A, Mehl R F. Reaction kinetics in processes of nucleation and growth [J]. Trans. Am. Inst. Min. Metall. Eng., 1939, 135: 416
32 Avrami M. Kinetics of phase change. I General theory [J]. J. Chem. Phys., 1939, 7(12): 1103
33 Avrami M. Kinetics of phase change. II transformation‐time relations for random distribution of nuclei [J]. J. Chem. Phys., 1940, 8(2): 212
34 Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III [J]. J. Chem. Phys., 1941, 9: 177
35 Watté P, Van Humbeeck J, Aernoudt E, et al. Strain ageing in heavily drawn eutectoid steel wires [J]. Scr. Mater., 1996, 34: 89
36 Ning A G, Liu Y, Gao R, et al. Effect of tempering condition on microstructure, mechanical properties and precipitates in AISI H13 steel [J]. JOM, 2021, 73(7): 2194
37 Wang Z C. Simulation study on thermal cycle, stress and fatigue of aluminum alloy die-casting dies [D]. Guangzhou: South China University of Technology, 2021
王子超. 铝合金压铸模具热循环、应力与疲劳的模拟研究 [D]. 广州: 华南理工大学, 2021
[1] LIU Qing'ao, ZHANG Weihong, WANG Zhiyuan, SUN Wenru. Low-cycle Fatigue Behavior of a Cast Ni-based Superalloy K4169 at 650oC[J]. 材料研究学报, 2024, 38(8): 621-631.
[2] LIU Shuo, ZHANG Peng, WANG Bin, WANG Kaizhong, XU Zikuan, HU Fangzhong, DUAN Qiqiang, ZHANG Zhefeng. Investigations on Strength-Toughness Relationship and Low Temperature Brittleness of High-speed Railway Axle Steel DZ2[J]. 材料研究学报, 2024, 38(8): 561-568.
[3] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[4] YUAN Xinzhong, WANG Cunjing, YAO Peng, LI Qiong, MA Zhihua, LI Pengfa. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors[J]. 材料研究学报, 2024, 38(7): 529-536.
[5] PENG Wenfei, HUANG Qiaodong, Moliar Oleksandr, DONG Chaoqi, WANG Xiaofeng. Effect of Heat Treatment on Mechanical Properties of a Novel Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr Alloy[J]. 材料研究学报, 2024, 38(7): 519-528.
[6] WANG Lijia, XU Junyi, HU Li, MIAO Tianhu, ZHAN Sha. Effect of Cryogenic Treatment on Mechanical Behavior of AZ31 Mg Alloy Sheet with Bimodal Non-basal Texture at Room Temperature[J]. 材料研究学报, 2024, 38(7): 499-507.
[7] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
[8] WANG Jinlong, WANG Huiming, LI Yingju, ZHANG Hongyi, LV Xiaoren. Pore Feature and Cracking Behavior of Cold-sprayed Al-based Composite Coatings under Reciprocating Friction[J]. 材料研究学报, 2024, 38(7): 481-489.
[9] YANG Pu, DENG Hailong, KANG Heming, LIU Jie, KONG Jianhang, SUN Yufan, YU Huan, CHEN Yu. Evaluation of Slip-cleavage Competition Failure Mechanisms for Titanium Alloys Induced by Microstructure in Very-high-cycle Fatigue Regime[J]. 材料研究学报, 2024, 38(7): 537-548.
[10] WU Qianfang, HE Qun, CHANG Bing, QUAN Yuxin, HU Jingwen, LI Saisai, CAO Yingnan. Preparation and Neutron Shielding Properties of Fiberglass Based Thermal Insulating Porous Ceramics[J]. 材料研究学报, 2024, 38(6): 471-480.
[11] WANG Jun, WANG Xuanli, LIU Shuang, SONG Rui, SONG Xiwen. Effect of Mn Doping on Microstructure and Thermal Conductivity of (Y0.4Er0.6)3Al5O12 Ceramics Material for Thermal Barrier Coating[J]. 材料研究学报, 2024, 38(6): 463-470.
[12] LI Yuanyuan, LIANG Jian, XIONG Ziliu, MIAO Bin, TIAN Xiugang, QI Jianjun, ZHENG Shijian. Influence of Alloying Elements on Interfacial Layer- and Galvanized Layer-Structure of New Hot-dip Galvanized Dual-phase Steel[J]. 材料研究学报, 2024, 38(6): 446-452.
[13] GUO Zhinan, ZHAO Qiang, LI Shuying, WANG Junli, XU Lin, SHANG Jianpeng, GUO Yong. Preparation and Degradation Performance of Composite Photocatalyst of Two-Dimensional Layered ZnNiAl-LDH/ Cuprous Oxide Particles[J]. 材料研究学报, 2024, 38(6): 423-429.
[14] CUI Yunqiu, NIU Chunjie, LV Jianhua, NI Weiyuan, LIU Dongping, LU Na. Effect of Helium Ions Irradiation at High Temperature on Surface Morphology of Tungsten[J]. 材料研究学报, 2024, 38(6): 437-445.
[15] WANG Wei, CHANG Wenjuan, LV Fanfan, XIE Zelei, YU Chengcheng. Preparation and Tribological Properties of Fluorinated Boron Nitride Nanosheets Water-based Additive[J]. 材料研究学报, 2024, 38(6): 410-422.
No Suggested Reading articles found!