Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (9): 651-658    DOI: 10.11901/1005.3093.2024.123
ARTICLES Current Issue | Archive | Adv Search |
Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy
LI Peiyue1(), ZHANG Minghui1, SUN Wentao2, BAO Zhihao2, GAO Qi1, WANG Yanzhi1, NIU Long1
1 Luoyang Ship Materials Research Institute, Luoyang 471023, China
2 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

LI Peiyue, ZHANG Minghui, SUN Wentao, BAO Zhihao, GAO Qi, WANG Yanzhi, NIU Long. Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy. Chinese Journal of Materials Research, 2024, 38(9): 651-658.

Download:  HTML  PDF(13866KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of mixed rare earth elements Ce and La on the microstructure and mechanical properties of Al-Zn alloy was studied by means of metallographic (OM), scanning electron microscopy (SEM), X-ray diffractometer (XRD), hardness tester and wear resistance test. The results show that after the addition of Ce and La, the Al-Zn alloy presents microstructure composed of three phases: eutectic Al11Ce3 and Al11La3 phases distributed along the grain boundaries and punctate iron-rich phases distributed in the matrix, furthermore, a rod-shaped primary Al11Ce3 phase may emerge when 0.75%RE is added. With the increase of mixed rare earth content, the grain of Al-Zn alloy is gradually refined, while the grain size is the smallest when the rare earth content is 0.75%, which is about 151 μm. The smaller the grain size, the higher the hardness and wear resistance of the alloy. Among others, the hardness is the highest, about 27.5HV, and the wear resistance is also the highest, the average friction factor is 1.076, and the average wear rate is 36.5 mg·N-1·m-1 for the alloy with addition of 0.75% mixed RE. In the process of friction wear, abrasive wear, peeling wear and plastic deformation mainly occur for the Al-Zn alloys.

Key words:  metallic materials      Al-Zn alloy      microalloying      microstructure      mechanical properties      wear mechanism     
Received:  18 March 2024     
ZTFLH:  TG146.21  
Corresponding Authors:  LI Peiyue, Tel: (0379)64829109, E-mail: lpy110015@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.123     OR     https://www.cjmr.org/EN/Y2024/V38/I9/651

SteelAlZnCeLa
Al-ZnBal.1.83--
Al-Zn-0.2REBal.1.830.140.07
Al-Zn-0.5REBal.1.810.300.16
Al-Zn-0.75REBal.1.800.460.24
Table 1  Chemical composition of Al-Zn alloys (mass fraction, %)
Fig.1  Schematic diagram of friction and wear experiment
Fig.2  Metallographic structure of Al-Zn alloys with different rare earth contents (a) 0%RE, (b) 0.2%RE, (c) 0.5%RE, (d)0.75%RE
Fig.3  XRD spectrum of Al-Zn alloys with different rare earth contents
Fig.4  SEM image of 0.75% RE Al-Zn alloy added
PointAlZnCeLaFe
1#97.801.930.050.140.08
2#75.634.5412.167.67-
3#73.404.3010.386.015.91
4#86.254.509.110.14-
Table 2  EDS analysis results of the marked points in Fig.4 (mass fraction, %)
Fig.5  Polarizing structure of Al-Zn alloys with different rare earth contents (a) 0%, (b) 0.2%, (c) 0.5%, (d) 0.75%
Fig.6  Average grain size of Al-Zn alloys with different rare earth contents
Fig.7  Hardness of Al-Zn alloys with different rare earth contents
Fig.8  Friction coefficient curves of Al-Zn alloys with different rare earth contents (a) 0%, (b) 0.2%, (c) 0.5%, (d) 0.75%
Fig.9  Average coefficient of friction and wear rate of Al-Zn alloys with different rare earth contents
Fig.10  Wear morphology of the surface of Al-Zn alloy
Fig.11  Wear surface morphology of Al-Zn alloys with different rare earth contents (a) 0%, (b) 0.75%
1 Esquivel J, Gupta R K. Review-corrosion-resistant metastable al alloys: An overview of corrosion mechanisms [J]. J. Electrochem. Soc., 2020, 167(8): 081504
2 Li T X, Li T, Liu Y P, et al. Review on research progress of 7X75 series aluminum alloys [J]. Light Alloy Fabr. Technol., 2023, 51(10): 1
李棠旭, 李 婷, 刘越鹏 等. 7X75系列铝合金的发展与展望 [J]. 轻合金加工技术, 2023, 51(10): 1
3 Hou S Z. Research and application of aluminum alloy for automobile [J]. Alum. Fabr., 2019, 6: 8
侯世忠. 汽车用铝合金的研究与应用 [J]. 铝加工, 2019, 6: 8
4 Fang H J, Liu H, Sun J, et al. Research status and development trend of 5xxx series aluminum alloys [J]. Mater. Rep., 2023, 37(21): 211
房洪杰, 刘 慧, 孙 杰 等. 5xxx系铝合金研究现状及发展趋势 [J]. 材料导报, 2023, 37(21): 211
5 Xiao B L, Qv F J, You Y, et al. Study on corrosion behavior of 5083 aluminum alloy for ships in static seawater [J]. Nonferrous Met. Process., 2020, 49(6): 7
肖宝靓, 曲凤娇, 尤 媛 等. 船舶用5083铝合金在静态海水中的腐蚀性能研究 [J]. 有色金属加工, 2020, 49(6): 7
6 Li Z Y, Yu H Y, Sun D B. The tribocorrosion mechanism of aluminum alloy 7075-T6 in the deep ocean [J]. Corros. Sci., 2021, 183: 109306
7 Wu L, Zeng D F, Tao N W. Cyclic aging study of several typical heavy-duty coating systems [J]. Dev. Appl. Mater., 2023, 38(6): 32
吴 乐, 曾登峰, 陶乃旺. 几种典型高耐久性防腐蚀涂层体系的循环老化研究 [J]. 材料开发与应用, 2023, 38(6): 32
8 Chen W G, Wang Z X, Xu G L, et al. Friction and anti-corrosion characteristics of arc sprayed Al+Zn coatings on steel structures prepared in atmospheric environment [J]. J. Mater. Res. Technol., 2021, 15: 6562
9 Lv D L, Zhang T, Gong F Y. Study on properties of cold-sprayed Al-Zn coating on S135 drill pipe steel [J]. Adv. Mater. Sci. Eng., 2020: 9209465
10 Cui G B, Ju X H, Ren Q, et al. Characterization of microstructure of hot dip Al-Zn plated coating [J]. Surf. Technol., 2021, 50(4): 361
11 Bonabi S F, Ashrafizadeh F, Sanati A, et al. structure and corrosion behavior of arc-sprayed Zn-Al coatings on ductile iron substrate [J]. J. Therm. Spray Technol., 2018, 27(3): 524
12 Wang Q, Wang Y G, Niu W J, et al. Study on the structure and properties of cold sprayed Al-Zn composite coatings on Q345R plate [J]. Surf. Technol., 2021, 50(2): 287
王 强, 王永刚, 牛文娟 等. Q345R板材表面冷喷涂Al-Zn涂层的组织及性能研究 [J]. 表面技术, 2021, 50(2): 287
13 Huang D, Zhao Z H, Zhu J M. Effect of rare-earth element La on microstructure and properties of aluminum-zinc alloy [J]. J. Guangxi Univ. Natl., Nat. Sci. Ed., 2017, 23(3): 86
黄 都, 赵祖豪, 祝金明. 稀土La元素对Al-Zn合金微观组织与性能的研究 [J]. 广西民族大学学报(自然科学版), 2017, 23(3): 86
14 Mai B T N. Influence of Recrystallization Annealing on the Microstructure and Ductility of Al-Zn-Mg-Cu Alloy Added La, Ce; proceedings of the International Conference on Material [A], Machines and Methods for Sustainable Development [C]. Berlin, 2023
15 Meng C, Su C, Liu Z, et al. Synergistic effect of RE (La, Er, Y, Ce) and Al-5Ti-B on the microstructure and mechanical properties of 6111 aluminum alloy [J]. Metals, 2023: 606
16 Yu H, Ru Z, Li Y, et al. Effects of Ce on as-cast and homogenization microstructure of Al-Mg-Si alloy [J]. Spec. Cast. Nonferrous Alloys, 2023: 229
17 Wang W Y, Pan Q L, Wang X D, et al. Improved heat and corrosion resistance of high electrical conductivity Al-Mg-Si alloys by multi-alloying of Ce, Sc and Y [J]. Corros. Sci., 2024, 226: 111695
18 Wang G S, Li H R, Li P Y, et al. Effect of cerium on the microstructure and anti-corrosion performance of Al-Zn coatings [J]. Surf. Coat. Technol., 2023, 473: 130046
19 Ma M, Ye W, Yan X D, et al. Effect of trace rare earth Ce on microstructure and corrosion resistance of pure aluminum [J]. Chin. J. Rare Met., 2020, 44(1): 56
马 敏, 叶 蔚, 闫晓东 等. 微量稀土铈对纯铝组织及耐蚀性能的影响 [J] 稀有金属, 2020, 44(1): 56
20 Xu D F, Chen K H, Hu G Y, et al. Effects of trace rare earth Ce on microstructure and corrosion properties of Al-Zn-Mg aluminum alloy [J]. Mater. Rep., 2020, 34(8): 8100
徐道芬, 陈康华, 胡桂云 等. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响 [J]. 材料导报, 2020, 34(8): 8100
21 Zhang M L, Zhang L J, Liu Z Z, et al. Effect of mixed rare earth (La, Ce) on corrosion resistance of 7A04 aluminum alloy [J] Trans. Mater. Heat Treat., 2022, 43(5): 40
张美丽, 张磊军, 刘壮壮 等. 混合稀土(La, Ce)对7A04铝合金耐蚀性能的影响 [J]. 材料热处理学报, 2022, 43(5): 40
doi: 10.13289/j.issn.1009-6264.2021-0568
22 Moodispaw M P, Cinkilic E, Miao J, et al. The Beneficial Effect of Iron in Aluminum-Cerium-Based Cast Alloys [J]. Metall. Mater. Trans. A, 2024, 55(5): 1351
23 Dai K. Study on the regulation mechanism of microstructure and properties of Al-Ce alloy [D]. Ganzhou: Jiangxi University of Science and Technology, 2023
戴 琨. Al-Ce合金组织与性能的调控机理研究 [D]. 赣州: 江西理工大学, 2023
24 Ye J Y, Dai K, Wang Z G, et al. Beneficial effects of Sc/Zr addition on hypereutectic Al-Ce alloys: Modification of primary phases and precipitation hardening [J]. Mater. Sci. Eng., A, 2022, 835: 142611
25 Czerwinski F, Amirkhiz B S. On the Al-Al11Ce3 eutectic transformation in aluminum-cerium binary alloys [J]. Materials, 2020, 13(20): 27
26 Czerwinski F. Cerium in aluminum alloys [J]. J. Mater. Sci., 2020, 55(1): 24
27 Wu T, Dunand D C. Microstructure and thermomechanical properties of Al11Ce3 [J]. Intermetallics, 2022, 148: 107636
28 Tiryakioglu M. On the relationship between vickers hardness and yield stress in Al-Zn-Mg-Cu alloys [J]. Mater. Sci. Eng., A, 2015, 633: 17
29 Cui X M, Wang Z W, Cui H, et al. Study on mechanism of refining and modifying in Al-Si-Mg casting alloys with adding rare earth cerium [J]. Mater. Res. Express, 2023, 10(8): 086511
30 Chen Q Q, Zhao Z H, Wang G S, et al. Effect of yttrium content on friction and wear resistance of surfacing welding Mg-Al-Zn all-oy [J]. Rare Met. Mater. Eng., 2018, 47(6): 1812
陈庆强, 赵志浩, 王高松 等. Y含量对Mg-Al-Zn堆焊合金摩擦磨损性能的影响 [J]. 稀有金属材料与工程, 2018, 47(6): 1812
[1] CUI Jie, LI Xudong, DU Xian, LI Shubo, DU Wenbo. Effect of Rolling Temperature on Microstructure Evolution and Mechanical/Thermal Properties of Mg-4Zn-1Mn-1.2Ce Alloy Sheet[J]. 材料研究学报, 2024, 38(9): 641-650.
[2] YIN Yifeng, LU Zhengguan, XU Lei, WU Jie. Hot Isostatic Pressing of GH4099 Alloy Powders and Preparation of Thin-walled Cylinders[J]. 材料研究学报, 2024, 38(9): 669-679.
[3] WANG Xiaofeng, TAN Wei, FENG Guangming, LIU Jibo, LIU Xianbin, LU Han. Effect of Fe-rich Phase on Mechanical Properties of Al-Mg-Si Alloy[J]. 材料研究学报, 2024, 38(9): 701-710.
[4] SHAO Xia, BAO Mengfan, CHEN Shijie, LIN Na, TAN Jie, MAO Aiqin. Preparation and Lithium Storage Performance of Spinel-type Cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 High-entropy Oxide[J]. 材料研究学报, 2024, 38(9): 680-690.
[5] CEN Yaodong, JI Chunjiao, BAO Xirong, WANG Xiaodong, CHEN Lin, DONG Rui. Stress-Strain Field at the Fatigue Crack Tip of Pearlite Heavy Rail Steel[J]. 材料研究学报, 2024, 38(9): 711-720.
[6] LIU Qing'ao, ZHANG Weihong, WANG Zhiyuan, SUN Wenru. Low-cycle Fatigue Behavior of a Cast Ni-based Superalloy K4169 at 650oC[J]. 材料研究学报, 2024, 38(8): 621-631.
[7] LIU Shuo, ZHANG Peng, WANG Bin, WANG Kaizhong, XU Zikuan, HU Fangzhong, DUAN Qiqiang, ZHANG Zhefeng. Investigations on Strength-Toughness Relationship and Low Temperature Brittleness of High-speed Railway Axle Steel DZ2[J]. 材料研究学报, 2024, 38(8): 561-568.
[8] LOU Weidong, ZHAO Haidong, WANG Guo. Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber[J]. 材料研究学报, 2024, 38(8): 593-604.
[9] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[10] YUAN Xinzhong, WANG Cunjing, YAO Peng, LI Qiong, MA Zhihua, LI Pengfa. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors[J]. 材料研究学报, 2024, 38(7): 529-536.
[11] PENG Wenfei, HUANG Qiaodong, Moliar Oleksandr, DONG Chaoqi, WANG Xiaofeng. Effect of Heat Treatment on Mechanical Properties of a Novel Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr Alloy[J]. 材料研究学报, 2024, 38(7): 519-528.
[12] WANG Lijia, XU Junyi, HU Li, MIAO Tianhu, ZHAN Sha. Effect of Cryogenic Treatment on Mechanical Behavior of AZ31 Mg Alloy Sheet with Bimodal Non-basal Texture at Room Temperature[J]. 材料研究学报, 2024, 38(7): 499-507.
[13] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
[14] WANG Jinlong, WANG Huiming, LI Yingju, ZHANG Hongyi, LV Xiaoren. Pore Feature and Cracking Behavior of Cold-sprayed Al-based Composite Coatings under Reciprocating Friction[J]. 材料研究学报, 2024, 38(7): 481-489.
[15] YANG Pu, DENG Hailong, KANG Heming, LIU Jie, KONG Jianhang, SUN Yufan, YU Huan, CHEN Yu. Evaluation of Slip-cleavage Competition Failure Mechanisms for Titanium Alloys Induced by Microstructure in Very-high-cycle Fatigue Regime[J]. 材料研究学报, 2024, 38(7): 537-548.
No Suggested Reading articles found!