|
|
Microstructure Evolution and Dynamic Recrystallization of a Low Density Steel during Isothermal Compression |
SUN Jian1,2( ), LI Jinghui2, HUANG Zhenyi2, ZHANG Xiaofeng2, WANG Dongsheng1, LIU Shuqing1 |
1.School of Mechanical Engineering, Tongling University, 244061 Tongling, China 2.School of Metallurgical Engineering, Anhui University of Technology, 243002 Ma'anshan, China |
|
Cite this article:
SUN Jian, LI Jinghui, HUANG Zhenyi, ZHANG Xiaofeng, WANG Dongsheng, LIU Shuqing. Microstructure Evolution and Dynamic Recrystallization of a Low Density Steel during Isothermal Compression. Chinese Journal of Materials Research, 2024, 38(10): 768-781.
|
Abstract A low-density steel Fe-29.96Mn-9.56Al-1.01C was isothermal compressed in a temperature range of 850~1100oC and strain rate range of 0.01~10 s-1, meanwhile, the microstructure evolution and dynamic recrystallization process of the steel were studied by OM, EBSD and TEM. On this basis, the corresponding constitutive equation of the steel is constructed based on strain compensation, and the effect of Z parameter on the dynamic recrystallization of the steel was analyzed. The results show that the conditions of low temperature and high strain rate are beneficial to the formation of fine dynamic recrystallization grains, but the recrystallization is not sufficient. In comparison, the conditions of decreasing strain rate while increasing temperature are more favorable to the completion of the dynamic recrystallization process of the steel. The Z-value has an important relationship with the dynamic recrystallization of the steel, i.e. the deformation condition of high temperature and low strain rate is conducive to the recrystallization and the grain growth for the steel with low Z-value. For the steel with middle and high Z values of, the same condition may be conductive to the formation of fine dynamic recrystallization grains, the retention of the original band-structure, and thereby a low degree of recrystallization. The grain boundary orientation difference of the steel shows a bimodal structure during thermal deformation. The main dynamic recrystallization mechanism of the steel is discontinuous dynamic recrystallization. The degree of continuous dynamic recrystallization and geometric dynamic recrystallization is weak under different thermal compression conditions.
|
Received: 19 February 2024
|
|
Fund: National Natural Science Foundation of China(51674004);National Natural Science Foundation of China(51805002);Anhui Provincial Natural Science Research Key Program of Higher Education Institutions(2022AH051760);Tongling University Natural Science Research Project(2023tlxy05);Tongling University Natural Science Research Project(2023tlxy03);Tongling University Natural Science Research Project(2017tlxy23);Key Laboratory of Construction Hydraulic Robots of Anhui Higher Education Institutes, Tongling University(TLXYCHR-O-21YB03) |
Corresponding Authors:
SUN Jian, Tel: (0562)5882096, E-mail: sjxa0913@163.com
|
1 |
Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
|
2 |
Gao Z Y, Kang Q F, An X L, et al. Enhanced mechanical properties of a Fe-Mn-Al-C austenitic low-density steel by increasing hot-rolling reduction [J]. Mater. Charact., 2023, 204: 113237
|
3 |
Gutierrez-Urrutia I. Low density Fe-Mn-Al-C steels: phase structures, mechanisms and properties [J]. ISIJ Int., 2021, 61: 16
doi: 10.2355/isijinternational.ISIJINT-2020-467
|
4 |
Zhang G F, Shi H Y, Wang S T, et al. Ultrahigh strength and high ductility lightweight steel achieved by dual nanoprecipitate strengthening and dynamic slip refinement [J]. Mater. Lett., 2023, 330: 133366
|
5 |
Yao M J, Welsch E, Ponge D, et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel [J]. Acta Mater., 2017, 140: 258
|
6 |
Banis A, Gomez A, Bliznuk V, et al. Microstructure evolution and mechanical behavior of Fe-Mn-Al-C low-density steel upon aging [J]. Mater. Sci. Eng. A, 2023, 875: 145109
|
7 |
Bai S B, Chen Y A, Liu X, et al. Research status and development prospect of Fe-Mn-C-Al system low-density steels [J]. J. Mater. Res. Technol., 2023
|
8 |
Ren P, Chen X P, Wang C Y, et al. Effects of pre-strain and two-step aging on microstructure and mechanical properties of Fe-30Mn-11Al-1.2C austenitic low-density steel [J]. Acta Metall. Sin., 2022, 58(6): 771
doi: 10.11900/0412.1961.2020.00509
|
|
任 平, 陈兴品, 王存宇 等. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响 [J]. 金属学报, 2022, 58(6): 771
|
9 |
Sun J, Huang Z Y, Li J H, et al. Research progress in heat treatment of Fe-Mn-Al-C system low-density steel [J]. Mater. Rep., 2023, 37(14): 140
|
|
孙 建, 黄贞益, 李景辉 等. Fe-Mn-Al-C系低密度钢热处理研究进展 [J]. 材料导报, 2023, 37(14): 140
|
10 |
Zhang X F, Wu X J, Tang L Z, et al. Cause analysis and control of edge crack of Iow density steel plate with high aluminum content [J]. Ordnance Mater. Sci. Eng., 2020, 43(5): 11
|
|
章小峰, 武学俊, 唐立志 等. 高铝低密度钢板带边裂成因分析及控制 [J]. 兵器材料科学与工程, 2020, 43(5): 11
|
11 |
Li Y P, Song R B, Wen E D, et al. Hot deformation and dynamic recrystallization behavior of austenite-based low density Fe-Mn-Al-C steel [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29(5): 441
|
12 |
Yang F Q, Song R B, Zhang L F, et al. Hot deformation behavior of Fe-Mn-Al light-weight steel [J]. Procedia Eng., 2014, 81: 456
|
13 |
Churyumov A Y, Kazakova A A, Pozdniakov A V, et al. Investigation of hot deformation behavior and microstructure evolution of lightweight Fe-35Mn-10Al-1C steel [J]. Metals-Basel. 2022, 12(5): 831
|
14 |
Kalantaria A R, Hanzaki A Z, Abediba H R, et al. The high temperature deformation behavior of a Triplex (ferrite+austenite+martensite) low density steel [J]. J. Mater. Res. Technol., 2021, 13: 1388
|
15 |
Jiang S Y, Wang Y, Zhang Y Q, et al. Constitutive behavior and microstructural evolution of FeMnSiCrNi shape memory alloy subjected to compressive deformation at high temperatures [J]. Mater. Des., 2019, 182: 108019
|
16 |
Zhang H M, Chen G, Chen Q, et al. A physically-based constitutive modelling of a high strength aluminum alloy at hot working conditions [J]. J. Alloys Compd., 2018, 743: 283
|
17 |
Mei R B, Bao L, Huang F, et al. Simulation of the flow behavior of AZ91 magnesium alloys at high deformation temperatures using a piecewise function of constitutive equations [J]. Mech. Mater., 2018, 125: 110
|
18 |
Ji G L, Li L, Qin F L, et al. Comparative study of phenomenological constitutive equations for an as-rolled M50NiL steel during hot deformation [J]. J. Alloys Compd., 2017, 695: 2389
|
19 |
Li X, Yang Q B, Fan X Z, et al. Influence of deformation parameters on dynamic recrystallization of 2195 Al-Li alloy [J]. Acta Metall. Sin., 2019, 55(6): 709
doi: 10.11900/0412.1961.2018.00430
|
|
李 旭, 杨庆波, 樊祥泽 等. 变形参数对2195 Al-Li合金动态再结晶的影响 [J]. 金属学报, 2019, 55(6): 709
|
20 |
Tian Y X, Liu C, Cao H L, et al. Research progress of dynamic recrystallization in metallic materials [J]. Rare Met. Mater. Eng., 2019, 48(11): 3764
|
|
田宇兴, 刘 成, 曹海龙 等. 金属材料的动态再结晶研究进展 [J]. 稀有金属材料与工程, 2019, 48(11): 3764
|
21 |
Bricknell R H, Edington J W. Deformation characteristics of an Al-6Cu-0.4Zr superplastic alloy [J]. Metall. Trans. A, 1979, 10: 1257
|
22 |
Belyakov A, Sakai T, Miura H, et al. Continuous recrystallization in austenitic stainless steel after large strain deformation [J]. Acta Mater., 2002, 50(6): 1547
|
23 |
Blum W, Zhu Q, Merkel R, et al. Geometric dynamic recrystallization in hot torsion of Al-5Mg-0.6Mn (AA5083) [J]. Mater. Sci. Eng. A, 1996, 205(1-2): 23
|
24 |
Liu D G, Ding H, Hu X, et al. Dynamic recrystallization and precipitation behaviors during hot deformation of a k-carbide-bearing multiphase Fe-11Mn-10A1-0.9C lightweight steel [J]. Mater. Sci. Eng. A, 2020, 772: 138682
|
25 |
Lu H T, Li D Z, Li S Y, et al. Hot deformation behavior of Fe-27.34Mn-8.63Al-1.03C lightweight steel [J]. Int. J. Miner., Metall. Mater., 2023, 30(4): 734
|
26 |
Cui Z Q, Zhang N F, Wang J, et al. High temperature compression deformation behavior of 9Mn27Al10Ni3Si low density steel [J]. Chin. J. Mater. Res., 2022, 36(12): 907
doi: 10.11901/1005.3093.2021.505
|
|
崔志强, 张宁飞, 王 婕 等. 9Mn27Al10Ni3Si低密度钢的高温压缩变形行为及其机制 [J]. 材料研究学报, 2022, 36(12): 907
doi: 10.11901/1005.3093.2021.505
|
27 |
Wang S L, Zhang M X, Wu H C, et al. Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel [J]. Mater. Charact., 2016, 118: 92
|
28 |
Zhang C, Zhang L W, Xu Q H, et al. The kinetics and cellular automaton modeling of dynamic recrystallization behavior of a medium carbon Cr-Ni-Mo alloyed steel in hot working process [J]. Mater. Sci. Eng. A, 2016, 678: 33
|
29 |
Zheng S J, Yuan X H, Gong X, et al. Hot deformation behavior and microstructural evolution of an Fe-Cr-W-Mo-V-C steel [J]. Metall. Mater. Trans. A, 2019, 50: 2342
|
30 |
Sellars C M, Mctegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14(9): 1136
|
31 |
Jonas J J, Sellars C M, Tegart W J M G. Strength and structure under hot-working conditions [J]. Metall. Rev., 1969, 14(1): 1
|
32 |
Zener C, Hollomon J H. Effect of strain-rate upon the plastic flow of steel [J]. Jpn. J. Appl. Phys., 1944, 15, 22
|
33 |
Sun J, Li J H, Wang P, et al. Hot deformation behavior, dynamic recrystallization and processing map of Fe-30Mn-10Al-1C low-density steel [J]. Trans. Indian Inst. Met., 2022, 75: 699
|
34 |
Wan P, Kang T, Li F, et al. Dynamic recrystallization behavior and microstructure evolution of low-density high-strength Fe-Mn-Al-C steel [J]. J. Mater. Res. Technol., 2021, 15: 1059
|
35 |
Li H. Study on dynamic recrystallization kinetics of rare earth magnesium alloys [D]. Chongqing: Southwest University, 2019
|
|
李 豪. 稀土镁合金动态再结晶动力学研究 [D]. 重庆: 西南大学, 2019
|
36 |
Zhang J, Wang C Y, Wang H, et al. Research on hot deformation behavior of austenite Fe30Mn9Al0.9C low density steel [J]. J. Iron Steel Res., 2023, 35(4): 434
|
|
张 婧, 王存宇, 王 辉 等. 奥氏体型Fe30Mn9Al0.9C低密度钢的热变形行为研究 [J]. 钢铁研究学报, 2023, 35(4): 434
|
37 |
Fan X S. The thermal deformation behavior and casting simulation of advanced low-density fecrnitiai superalloy [D]. Harbin: Harbin Institute of Technology, 2019
|
|
范晓烁. 新型低密度FeCrNiTiAl高温合金的热变形行为与铸造过程模拟 [D]. 哈尔滨: 哈尔滨工业大学, 2019
|
38 |
Duan G K. Study on hot deformation behavior of low density automobile steel containing medium manganese and high aluminum [D]. Shenyang: Northeastern University, 2022
|
|
段国凯. 中锰高铝低密度汽车用钢热变形行为研究 [D]. 沈阳: 东北大学, 2022
|
39 |
Roberts W, Ahlblom B. A nucleation criterion for dynamic recrystallization during hot working [J]. Acta Metall., 1978, 26(5): 801
|
40 |
Liu J, Li J Q, Cui Z S, et al. A new one-parameter kinetics model of dynamic recrystallization and grain size predication [J]. Acta Metall. Sin., 2012, 48: 1510
|
|
刘 娟, 李居强, 崔振山 等. 新的单参数动态再结晶动力学建模及晶粒尺寸预测 [J]. 金属学报, 2012, 48: 1510
|
41 |
Kassner M E, Barrabes S R. New developments in geometric dynamic recrystallization [J]. Mater. Sci. Eng. A, 2005, 410: 152
|
42 |
Gourdet S, Montheillet F. A model of continuous dynamic recrystallization [J]. Acta Mater., 2003, 51(9): 2685
|
43 |
Jazaeri H, Humphreys F J. The transition from discontinuous to continuous recrystallization in some aluminium alloys: I-the deformed state [J]. Acta Mater., 2004, 52(11): 3239
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|