Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (10): 768-781    DOI: 10.11901/1005.3093.2024.082
ARTICLES Current Issue | Archive | Adv Search |
Microstructure Evolution and Dynamic Recrystallization of a Low Density Steel during Isothermal Compression
SUN Jian1,2(), LI Jinghui2, HUANG Zhenyi2, ZHANG Xiaofeng2, WANG Dongsheng1, LIU Shuqing1
1.School of Mechanical Engineering, Tongling University, 244061 Tongling, China
2.School of Metallurgical Engineering, Anhui University of Technology, 243002 Ma'anshan, China
Cite this article: 

SUN Jian, LI Jinghui, HUANG Zhenyi, ZHANG Xiaofeng, WANG Dongsheng, LIU Shuqing. Microstructure Evolution and Dynamic Recrystallization of a Low Density Steel during Isothermal Compression. Chinese Journal of Materials Research, 2024, 38(10): 768-781.

Download:  HTML  PDF(24352KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A low-density steel Fe-29.96Mn-9.56Al-1.01C was isothermal compressed in a temperature range of 850~1100oC and strain rate range of 0.01~10 s-1, meanwhile, the microstructure evolution and dynamic recrystallization process of the steel were studied by OM, EBSD and TEM. On this basis, the corresponding constitutive equation of the steel is constructed based on strain compensation, and the effect of Z parameter on the dynamic recrystallization of the steel was analyzed. The results show that the conditions of low temperature and high strain rate are beneficial to the formation of fine dynamic recrystallization grains, but the recrystallization is not sufficient. In comparison, the conditions of decreasing strain rate while increasing temperature are more favorable to the completion of the dynamic recrystallization process of the steel. The Z-value has an important relationship with the dynamic recrystallization of the steel, i.e. the deformation condition of high temperature and low strain rate is conducive to the recrystallization and the grain growth for the steel with low Z-value. For the steel with middle and high Z values of, the same condition may be conductive to the formation of fine dynamic recrystallization grains, the retention of the original band-structure, and thereby a low degree of recrystallization. The grain boundary orientation difference of the steel shows a bimodal structure during thermal deformation. The main dynamic recrystallization mechanism of the steel is discontinuous dynamic recrystallization. The degree of continuous dynamic recrystallization and geometric dynamic recrystallization is weak under different thermal compression conditions.

Key words:  foundational discipline in materials science      Fe-Mn-Al-C      low density steel      isothermal compression      microstructure evolution      dynamic recrystallization     
Received:  19 February 2024     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(51674004);National Natural Science Foundation of China(51805002);Anhui Provincial Natural Science Research Key Program of Higher Education Institutions(2022AH051760);Tongling University Natural Science Research Project(2023tlxy05);Tongling University Natural Science Research Project(2023tlxy03);Tongling University Natural Science Research Project(2017tlxy23);Key Laboratory of Construction Hydraulic Robots of Anhui Higher Education Institutes, Tongling University(TLXYCHR-O-21YB03)
Corresponding Authors:  SUN Jian, Tel: (0562)5882096, E-mail: sjxa0913@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.082     OR     https://www.cjmr.org/EN/Y2024/V38/I10/768

Fig.1  True stress-true strain curves of low density steels at different deformation condition: (a) 0.01 s-1; (b) 1100oC
Strainα / mm-2·N-1nQ / J·mol-1lnA / s-1Strainα / mm-2·N-1nQ / J·mol-1lnA / s-1
0.050.0040516.63415298.8238.600.450.0046174.38355015.5032.12
0.10.0041335.67398082.6036.300.50.0047624.28350333.6631.68
0.150.0041015.29390787.9935.560.550.0048884.20344814.7731.17
0.20.0041335.02384206.6634.900.60.0050324.13342338.4430.92
0.250.0041954.86381160.2834.590.650.0051554.07336804.9830.38
0.30.0042694.74377405.9834.230.70.0052664.01331763.1229.89
0.350.0043594.61368306.2033.370.750.0053264.02336002.2030.28
0.40.0044914.48361460.7932.710.80.0053704.07339840.9230.65
Table 1  Material parameters under different strains
AlloyT / oCε˙ / s-1Phasenα / mm-2·N-1Q / kJ·mol-1References
Fe-27Mn-11.5Al-0.95C900~11500.01~10γ + δ3.930.0035294.20[11]
Fe-27.34Mn-8.63Al-1.03C900~11500.01~5γ4.240.0107422.88[25]
Fe-25.14Mn-10Al-1.46C900~11500.01~10γ5.140.0060669.84[34]
Fe-29.96Mn-9.56Al-1.01C850~11000.01~10γ4.01~6.630.0041~0.0054331.76~415.30Present work
Table 2  Data for phase composition, material constants (n, α), and activation energy of hot deformation for low density steels
Fig.2  Plot of fitting the low density steel true strain ε to α, n, Q and lnA, respectively
α / mm-2·N-1nQ / J·mol-1lnA / s-1
X0 = 0.004Y0 = 8.357Z0 = 453241.858U0 = 43.528
X1 = 0.005Y1 = -46.341Z1 = -1.064 × 106U1 = -139.265
X2 = -0.044Y2 = 271.137Z2 = 7.351 × 106U2 = 966.741
X3 = 0.179Y3 = -862.279Z3 = -2.706 × 107U3 = -3501.208
X4 = -0.335Y4 = 1479.257Z4 = 5.110 × 107U4 = 6550.284
X5 = 0.304Y5 = -1295.175Z5 = -4.800 × 107U5 = -6112.333
X6 = -0.110Y6 = 454.902Z6 = 1.787 × 107U6 = 2259.787
Table 3  The 6th polynomial coefficients of material parameters α, n, Q and lnA
Fig.3  Comparisons between predicted and measured values of flow stress for low density steel under different hot compression conditions
Fig.4  Comparison of measured flow stress and predicted flow stress of low density steel under different deformation conditions
ε˙ / s-1lnZ
850oC900oC950oC1000oC1050oC1100oC
0.0138.236.434.733.231.830.4
0.140.538.737.035.534.132.7
142.841.039.337.836.435.0
1045.143.341.640.138.737.3
Table 4  lnZ values under different strain rates and deformation temperatures
Fig.5  Schematic diagram for distinguishing Z-parameter values of low density steel
Fig.6  Microstructure of low density steel after thermal compression with Z value in the range of zone I (ε = 0.9): (a) 1nZ = 31.8; (b) 1nZ = 30.4
Fig.7  Microstructure of low density steel after thermal compression with Z value in the range of zone Ⅱ (ε = 0.9) (a) 1nZ = 39.3; (b) 1nZ = 37.8
Fig.8  Microstructure of low density steel after thermal compression with Z value in the range of zone Ⅲ (ε = 0.9) (a) 1nZ = 45.1; (b) 1nZ = 43.3
Fig.9  Relationship between lnZ and deformation parameters
Fig.10  (a) relationship curve between lnZ and critical strain; (b) relationship curve between lnZ and critical stress
Fig.11  Inverse pole figure of thermal deformation structure of low density steel (a) lnZ = 31.8; (b) lnZ = 34.1; (c) lnZ = 37.0;(d) lnZ = 39.3; (e) lnZ = 41.0; (f) lnZ = 42.8
Fig.12  Grain boundary diagram of thermal deformation structure of experimental steel (a) lnZ = 31.8; (b) lnZ = 34.1; (c) lnZ = 37.0; (d) lnZ = 39.3; (e) lnZ = 41.0; (f) lnZ = 42.8 (In the figure, the black line indicates the large angle grain boundary > 15°, the blue line indicates the grain boundary 10°~15°, and the red line indicates the grain boundary < 10°)
Fig.13  Boundary misorientation angle distribution of thermal deformed microstructure of experimental steel (a) lnZ = 31.8; (b) lnZ = 34.1; (c) lnZ = 37.0; (d) lnZ = 39.3; (e) lnZ = 41.0; (f) lnZ = 42.8
Fig.14  Volume fraction of dynamic recrystallization under different Z-values
Fig.15  TEM image of thermal deformation structure of low density steel (a) lnZ = 31.8; (b) lnZ = 34.1; (c) lnZ = 37.0; (d) lnZ = 39.3; (e) lnZ = 41.0; (f) lnZ = 42.8
1 Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
2 Gao Z Y, Kang Q F, An X L, et al. Enhanced mechanical properties of a Fe-Mn-Al-C austenitic low-density steel by increasing hot-rolling reduction [J]. Mater. Charact., 2023, 204: 113237
3 Gutierrez-Urrutia I. Low density Fe-Mn-Al-C steels: phase structures, mechanisms and properties [J]. ISIJ Int., 2021, 61: 16
doi: 10.2355/isijinternational.ISIJINT-2020-467
4 Zhang G F, Shi H Y, Wang S T, et al. Ultrahigh strength and high ductility lightweight steel achieved by dual nanoprecipitate strengthening and dynamic slip refinement [J]. Mater. Lett., 2023, 330: 133366
5 Yao M J, Welsch E, Ponge D, et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel [J]. Acta Mater., 2017, 140: 258
6 Banis A, Gomez A, Bliznuk V, et al. Microstructure evolution and mechanical behavior of Fe-Mn-Al-C low-density steel upon aging [J]. Mater. Sci. Eng. A, 2023, 875: 145109
7 Bai S B, Chen Y A, Liu X, et al. Research status and development prospect of Fe-Mn-C-Al system low-density steels [J]. J. Mater. Res. Technol., 2023
8 Ren P, Chen X P, Wang C Y, et al. Effects of pre-strain and two-step aging on microstructure and mechanical properties of Fe-30Mn-11Al-1.2C austenitic low-density steel [J]. Acta Metall. Sin., 2022, 58(6): 771
doi: 10.11900/0412.1961.2020.00509
任 平, 陈兴品, 王存宇 等. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响 [J]. 金属学报, 2022, 58(6): 771
9 Sun J, Huang Z Y, Li J H, et al. Research progress in heat treatment of Fe-Mn-Al-C system low-density steel [J]. Mater. Rep., 2023, 37(14): 140
孙 建, 黄贞益, 李景辉 等. Fe-Mn-Al-C系低密度钢热处理研究进展 [J]. 材料导报, 2023, 37(14): 140
10 Zhang X F, Wu X J, Tang L Z, et al. Cause analysis and control of edge crack of Iow density steel plate with high aluminum content [J]. Ordnance Mater. Sci. Eng., 2020, 43(5): 11
章小峰, 武学俊, 唐立志 等. 高铝低密度钢板带边裂成因分析及控制 [J]. 兵器材料科学与工程, 2020, 43(5): 11
11 Li Y P, Song R B, Wen E D, et al. Hot deformation and dynamic recrystallization behavior of austenite-based low density Fe-Mn-Al-C steel [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29(5): 441
12 Yang F Q, Song R B, Zhang L F, et al. Hot deformation behavior of Fe-Mn-Al light-weight steel [J]. Procedia Eng., 2014, 81: 456
13 Churyumov A Y, Kazakova A A, Pozdniakov A V, et al. Investigation of hot deformation behavior and microstructure evolution of lightweight Fe-35Mn-10Al-1C steel [J]. Metals-Basel. 2022, 12(5): 831
14 Kalantaria A R, Hanzaki A Z, Abediba H R, et al. The high temperature deformation behavior of a Triplex (ferrite+austenite+martensite) low density steel [J]. J. Mater. Res. Technol., 2021, 13: 1388
15 Jiang S Y, Wang Y, Zhang Y Q, et al. Constitutive behavior and microstructural evolution of FeMnSiCrNi shape memory alloy subjected to compressive deformation at high temperatures [J]. Mater. Des., 2019, 182: 108019
16 Zhang H M, Chen G, Chen Q, et al. A physically-based constitutive modelling of a high strength aluminum alloy at hot working conditions [J]. J. Alloys Compd., 2018, 743: 283
17 Mei R B, Bao L, Huang F, et al. Simulation of the flow behavior of AZ91 magnesium alloys at high deformation temperatures using a piecewise function of constitutive equations [J]. Mech. Mater., 2018, 125: 110
18 Ji G L, Li L, Qin F L, et al. Comparative study of phenomenological constitutive equations for an as-rolled M50NiL steel during hot deformation [J]. J. Alloys Compd., 2017, 695: 2389
19 Li X, Yang Q B, Fan X Z, et al. Influence of deformation parameters on dynamic recrystallization of 2195 Al-Li alloy [J]. Acta Metall. Sin., 2019, 55(6): 709
doi: 10.11900/0412.1961.2018.00430
李 旭, 杨庆波, 樊祥泽 等. 变形参数对2195 Al-Li合金动态再结晶的影响 [J]. 金属学报, 2019, 55(6): 709
20 Tian Y X, Liu C, Cao H L, et al. Research progress of dynamic recrystallization in metallic materials [J]. Rare Met. Mater. Eng., 2019, 48(11): 3764
田宇兴, 刘 成, 曹海龙 等. 金属材料的动态再结晶研究进展 [J]. 稀有金属材料与工程, 2019, 48(11): 3764
21 Bricknell R H, Edington J W. Deformation characteristics of an Al-6Cu-0.4Zr superplastic alloy [J]. Metall. Trans. A, 1979, 10: 1257
22 Belyakov A, Sakai T, Miura H, et al. Continuous recrystallization in austenitic stainless steel after large strain deformation [J]. Acta Mater., 2002, 50(6): 1547
23 Blum W, Zhu Q, Merkel R, et al. Geometric dynamic recrystallization in hot torsion of Al-5Mg-0.6Mn (AA5083) [J]. Mater. Sci. Eng. A, 1996, 205(1-2): 23
24 Liu D G, Ding H, Hu X, et al. Dynamic recrystallization and precipitation behaviors during hot deformation of a k-carbide-bearing multiphase Fe-11Mn-10A1-0.9C lightweight steel [J]. Mater. Sci. Eng. A, 2020, 772: 138682
25 Lu H T, Li D Z, Li S Y, et al. Hot deformation behavior of Fe-27.34Mn-8.63Al-1.03C lightweight steel [J]. Int. J. Miner., Metall. Mater., 2023, 30(4): 734
26 Cui Z Q, Zhang N F, Wang J, et al. High temperature compression deformation behavior of 9Mn27Al10Ni3Si low density steel [J]. Chin. J. Mater. Res., 2022, 36(12): 907
doi: 10.11901/1005.3093.2021.505
崔志强, 张宁飞, 王 婕 等. 9Mn27Al10Ni3Si低密度钢的高温压缩变形行为及其机制 [J]. 材料研究学报, 2022, 36(12): 907
doi: 10.11901/1005.3093.2021.505
27 Wang S L, Zhang M X, Wu H C, et al. Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel [J]. Mater. Charact., 2016, 118: 92
28 Zhang C, Zhang L W, Xu Q H, et al. The kinetics and cellular automaton modeling of dynamic recrystallization behavior of a medium carbon Cr-Ni-Mo alloyed steel in hot working process [J]. Mater. Sci. Eng. A, 2016, 678: 33
29 Zheng S J, Yuan X H, Gong X, et al. Hot deformation behavior and microstructural evolution of an Fe-Cr-W-Mo-V-C steel [J]. Metall. Mater. Trans. A, 2019, 50: 2342
30 Sellars C M, Mctegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14(9): 1136
31 Jonas J J, Sellars C M, Tegart W J M G. Strength and structure under hot-working conditions [J]. Metall. Rev., 1969, 14(1): 1
32 Zener C, Hollomon J H. Effect of strain-rate upon the plastic flow of steel [J]. Jpn. J. Appl. Phys., 1944, 15, 22
33 Sun J, Li J H, Wang P, et al. Hot deformation behavior, dynamic recrystallization and processing map of Fe-30Mn-10Al-1C low-density steel [J]. Trans. Indian Inst. Met., 2022, 75: 699
34 Wan P, Kang T, Li F, et al. Dynamic recrystallization behavior and microstructure evolution of low-density high-strength Fe-Mn-Al-C steel [J]. J. Mater. Res. Technol., 2021, 15: 1059
35 Li H. Study on dynamic recrystallization kinetics of rare earth magnesium alloys [D]. Chongqing: Southwest University, 2019
李 豪. 稀土镁合金动态再结晶动力学研究 [D]. 重庆: 西南大学, 2019
36 Zhang J, Wang C Y, Wang H, et al. Research on hot deformation behavior of austenite Fe30Mn9Al0.9C low density steel [J]. J. Iron Steel Res., 2023, 35(4): 434
张 婧, 王存宇, 王 辉 等. 奥氏体型Fe30Mn9Al0.9C低密度钢的热变形行为研究 [J]. 钢铁研究学报, 2023, 35(4): 434
37 Fan X S. The thermal deformation behavior and casting simulation of advanced low-density fecrnitiai superalloy [D]. Harbin: Harbin Institute of Technology, 2019
范晓烁. 新型低密度FeCrNiTiAl高温合金的热变形行为与铸造过程模拟 [D]. 哈尔滨: 哈尔滨工业大学, 2019
38 Duan G K. Study on hot deformation behavior of low density automobile steel containing medium manganese and high aluminum [D]. Shenyang: Northeastern University, 2022
段国凯. 中锰高铝低密度汽车用钢热变形行为研究 [D]. 沈阳: 东北大学, 2022
39 Roberts W, Ahlblom B. A nucleation criterion for dynamic recrystallization during hot working [J]. Acta Metall., 1978, 26(5): 801
40 Liu J, Li J Q, Cui Z S, et al. A new one-parameter kinetics model of dynamic recrystallization and grain size predication [J]. Acta Metall. Sin., 2012, 48: 1510
刘 娟, 李居强, 崔振山 等. 新的单参数动态再结晶动力学建模及晶粒尺寸预测 [J]. 金属学报, 2012, 48: 1510
41 Kassner M E, Barrabes S R. New developments in geometric dynamic recrystallization [J]. Mater. Sci. Eng. A, 2005, 410: 152
42 Gourdet S, Montheillet F. A model of continuous dynamic recrystallization [J]. Acta Mater., 2003, 51(9): 2685
43 Jazaeri H, Humphreys F J. The transition from discontinuous to continuous recrystallization in some aluminium alloys: I-the deformed state [J]. Acta Mater., 2004, 52(11): 3239
[1] WANG Lijia, XU Junyi, HU Li, MIAO Tianhu, ZHAN Sha. Effect of Cryogenic Treatment on Mechanical Behavior of AZ31 Mg Alloy Sheet with Bimodal Non-basal Texture at Room Temperature[J]. 材料研究学报, 2024, 38(7): 499-507.
[2] WU Yingming, JIANG Keda, LIU Shengdan, FAN Shitong, QIN Qiuhui, LI Jun. Hot Compression Deformation Behavior of 6013 Aluminum Alloy by Low lnZ[J]. 材料研究学报, 2024, 38(5): 337-346.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[5] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[6] ZHANG Ruixue, MA Yingjie, JIA Yandi, HUANG Sensen, LEI Jiafeng, QIU Jianke, WANG Ping, YANG Rui. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. 材料研究学报, 2023, 37(3): 161-167.
[7] YU Sen, CHEN Leli, LUO Rui, YUAN Zhizhong, WANG Shuang, GAO Pei, CHENG Xiaonong. Dynamic Recrystallization and Microstructure Evolution Mechanism of GH4169 Alloy[J]. 材料研究学报, 2023, 37(3): 211-218.
[8] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[10] CUI Zhiqiang, ZHANG Ningfei, WANG Jie, HOU Qingyu, HUANG Zhenyi. High Temperature Compression Deformation Behavior of 9Mn27Al10Ni3Si Low Density Steel[J]. 材料研究学报, 2022, 36(12): 907-918.
[11] LIU Yang, KANG Rui, FENG Xiaohui, LUO Tianjiao, LI Yingju, FENG Jianguang, CAO Tianhui, HUANG Qiuyan, YANG Yuansheng. Microstructure and Mechanical Properties of Extruded Mg-Alloy Mg-Al-Ca-Mn-Zn[J]. 材料研究学报, 2022, 36(1): 13-20.
[12] LIU Chao, WANG Xin, MEN Yue, ZHANG Haoyu, ZHANG Siqian, ZHOU Ge, CHEN Lijia, LIU Haijian. Dynamic Recrystallization of Ti-6Al-4V Alloy During Hot Compression[J]. 材料研究学报, 2021, 35(8): 583-590.
[13] SUN He, CHEN Ming, CHENG Ming, WANG Ruixue, WANG Xu, HU Xiaodong, ZHAO Hongyang, JU Dongying. A Multi-scale Model for Elucidation of Recrystallization and Texture of Mg-Alloy Sheet by Warm-rolling Process[J]. 材料研究学报, 2021, 35(5): 339-348.
[14] YANG Jingcheng, WANG Lizhong, ZHONG Zhiping, ZHENG Yingjun. Flow Stress Prediction Model of 37CrS4 Special Steel Based on Dynamic Recrystallization[J]. 材料研究学报, 2021, 35(4): 284-292.
[15] WANG Ping, GUO Aimin, HOU Qingyu, GUO Yunxia, HUANG Zhenyi, GUANG Jianfeng. Properties and Deformation Mechanism of Aged Fe-Mn-Al-C Steel[J]. 材料研究学报, 2021, 35(3): 184-192.
No Suggested Reading articles found!