Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (9): 669-679    DOI: 10.11901/1005.3093.2023.514
ARTICLES Current Issue | Archive | Adv Search |
Hot Isostatic Pressing of GH4099 Alloy Powders and Preparation of Thin-walled Cylinders
YIN Yifeng1,2, LU Zhengguan1, XU Lei1, WU Jie1()
1 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110116, China
Cite this article: 

YIN Yifeng, LU Zhengguan, XU Lei, WU Jie. Hot Isostatic Pressing of GH4099 Alloy Powders and Preparation of Thin-walled Cylinders. Chinese Journal of Materials Research, 2024, 38(9): 669-679.

Download:  HTML  PDF(16917KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Two pre-powders of GH4099 alloy were prepared via techniques of plasma rotating electrode process (PREP) and electrode induction melting gas atomization (EIGA) respectively. Then, the powders were subjected to hot isostatic pressing (HIP) to prepare bulk GH4099 alloy (PM GH4099 alloy), and the effect of HIP temperature on the microstructure and tensile properties of PM GH4099 alloy was investigated. The results show that in comparison with EIGA process, the GH4099 powder prepared by PREP process has better powder sphericity with thinner surface oxide scale, which is more suitable for hot isostatic pressing preparation of workpiece of PM GH4099 alloys. With the increasing HIP temperature within the range of 1165oC~1230oC, the porosity and prior particle boundaries (PPBs) of the acquired PM GH4099 alloy decreases significantly, therewith, the corresponding tensile properties at 900oC were improved. Finally, with the help of finite element modeling (FEM) to assist the envelope design and make, and finally thin-walled cylinders of PM GH4099 were successfully fabricated with the PREP powder via HIP at 1230oC/150 MPa/4 h. The FEM predicted dimensional shrinkages are consistent with that of the actual made thin-walled cylinders of PM GH4099, and the deviation between the corresponding key dimensions is less than 5%.

Key words:  metallic materials      GH4099 alloy      powder metallurgy      hot isostatic pressing      near-net shape manufacturing     
Received:  19 October 2023     
ZTFLH:  TG132.32  
Fund: CAS Project for Young Scientists in Basic Research(YSBR-025);National Science and Technology Major Project of China(J2019-VⅡ-0005-0145)
Corresponding Authors:  WU Jie, Tel: (024)83978843, E-mail: jwu10s@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.514     OR     https://www.cjmr.org/EN/Y2024/V38/I9/669

AlTiCrCoMoWHNONi
Master Alloy2.071.2818.466.344.136.180.000120.00090.0006Bal.
PREP2.221.2718.646.763.855.710.000220.00140.0039Bal.
EIGA2.161.2918.676.953.915.950.000240.00150.0049Bal.
Table 1  Chemical compositions of GH4099 pre-alloyed powders (mass fraction, %)
Fig.1  Morphologies of GH4099 pre-alloyed powders (a) PREP, (b) EIGA
Fig.2  Particle size distribution of GH4099 pre-alloyed powders
Fig.3  XPS patterns of GH4099 pre-alloyed powders (a) EIGA, (b) PREP
Fig.4  DSC curves of GH4099 pre-alloyed powders during the heating stage
Preparation processTemperaturePressureHolding timeCooling type
HIP11165oC150 MPa4 hFurnace cooling
HIP21200oC150 MPa4 hFurnace cooling
HIP31230oC150 MPa4 hFurnace cooling
Table 2  HIP conditions for GH4099 alloy powders
Fig.5  SEM images of GH4099 alloys (a, b) HIP1, (c) HIP2, (d) HIP3
Fig.6  Carbide at the PPBs in GH4099 alloys under HIP3. (a) TEM images, (b) Electron diffraction pattern and (c) EDS spectrum of particle 1 in (a)
Fig.7  Micro-CT images of GH4099 alloys (a) HIP1, (b) HIP3, and (c) column comparison chart
Fig.8  Tensile properties at room and elevated temperature of as-HIPed GH4099 alloys (a, b) room temperature and (c, d) 900oC
Fig.9  Tensile fracture surface of GH4099 alloys at 900oC (a) HIP1, (b) HIP2, (c) HIP3
Fig.10  Predicted size of thin-walled cylinder before (a) and after (b) shrinkage by FEM
Fig.11  Physical model diagram of thin-walled cylinder (a) and relative positional relationship between simulated and measured values of thin-walled cylinder cross-section (b)
PositionActual size / mmSimulated size / mmDeviation / mmRelative error / %
01450.51465.4814.973.2
02479.49497.5218.033.6
03443.90462.5618.664.0
04476.77496.8820.114.0
05447.58455.087.501.6
06480.32521.0340.717.8
Table 3  Comparison of the measured and simulated dimensions of thin-walled cylinder at some positions
1 Zhang H B. Hot deformation behavior and microstructure evolution of GH99 superalloy [D]. Harbin: Harbin Institute of Technology, 2015
张弘斌. GH99高温合金高温变形行为及组织演化规律研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015
2 Li F, Lu Q, Yu Y D. Forming process and microstructure and properties of selective laser melted GH4099 superalloy [J]. T. Mater. Heat Treat., 2021, 42(9): 98
doi: 10.13289/j.issn.1009-6264.2021-0132
李 范, 卢 强, 佘亚东. 激光选区熔化GH4099高温合金成形工及组织性能 [J]. 材料热处理学报, 2021, 42(9): 98
3 Lü H, Yang Z B, Wang X, et al. Microstructures and tensile properties of GH4099 alloy Fabricated by laser additive manufacturing after heat treatment [J]. Chin. J. Lasers., 2018, 45(10): 77
吕 豪, 杨志斌, 王 鑫 等. 激光增材制造GH4099合金热处理后的显微组织及拉伸性能 [J]. 中国激光, 2018, 45(10): 77
4 Hu Y L, Lin X, Li Y L, et al. Effect of heat treatment on the microstructural evolution and mechanical properties of GH4099 additive-manufactured by directed energy deposition [J]. J. Alloys. Compd., 2019, 800: 163
5 Tan C L, Weng F, Sui S, et al. Progress and perspectives in laser additive manufacturing of key aeroengine materials [J]. Int. J. Mach. Tools. Manuf., 2021, 170: 103804
6 Thomas M, Baxter G J, Todd I. Normalised model-based processing diagrams for additive layer manufacture of engineering alloys [J]. Acta Mater., 2016, 108: 26
7 Xu J H, Schulz F, Peng R L, et al. Effect of heat treatment on the microstructure characteristics and microhardness of a novel γ′ nickel-based superalloy by laser powder bed fusion [J]. Results Mater., 2021(12): 100232
8 Xu L, Guo R P, Wu J, et al. Progress in hot isostatic pressing technology of titanium alloy powder. [J]. Acta Metall. Sin., 2018, 54(11): 1537
徐 磊, 郭瑞鹏, 吴 杰 等. 钛合金粉末热等静压近净成形研究进展 [J]. 金属学报, 2018, 54(11): 1537
9 Tian X S, Wu Jie, Lu Z G, et al. Effects of cooling rate on the microstructure and tensile properties of powder metallurgy Ti2AlNb alloy [J]. JOM, 2022, 74(8): 2964
10 Raisson G. Evolution of PM nickel base superalloy processes and products [J]. Powder Metall., 2008, 51: 10
11 Bampton C, Goodin W, Vandaam T, et al. Net-shape HIP powder metallurgy components for rocket engines [A]. International Conference on Hot Isostatic Pressing 2005, Net-Shape HIP Powder Metallurgy Components for Rocket Engines [C]. Paris, France, 2005
12 Bassini E, Basile G, Marchese G, et al. Assessment of the reinforcing system and carbides evolution in hot isostatically pressed astroloy after prolonged exposure at 820oC [J]. Mater. Sci. Eng. A, 2020, 773: 138879
13 Tian X S. Densification mechanism of Inconel 718 pre-alloyed powders consolidated by hot isostatic pressing [D]. Shenyang: University of Science and Technology of China, 2023
田晓生. Inconel 718粉末合金的热等静压致密化机理研究 [D]. 沈阳: 中国科学技术大学, 2023
14 Hans F, David F. Processing of nickel-base superalloys for turbine engine disc applications [J]. Adv. Powder Technol., 2000, 2: 777
15 Liu Q M, Wu J, Chen Y L, et al. Effect of temperature and powder particle size on mechanical properties and microstructure of PM Ti2AlNb alloy prepared via hot isostatic pressing [J]. Chin. J. Mater. Res., 2019, 33(3): 161
刘巧沐, 吴 杰, 陈玉龙 等. 热等静压温度和粉末粒度对Ti2AlNb合金组织与性能的影响 [J]. 材料研究学报, 2019, 33(3): 161
doi: 10.11901/1005.3093.2018.509
16 Chang L T. Preparation and hot isostatic press compaction of superalloy powder with less ceramic inclusions [D]. Shenyang: University of Chinese Academy of Sciences, 2014
常立涛. 洁净高温合金粉末的制备及其热等静压工艺研究 [D]. 沈阳: 中国科学院大学, 2014
17 Wang H L. Study on improving mechanical properties of GH99 alloy plate [J]. Sichuan Metall., 2006, 26(1): 30
王怀柳. 改善GH99合金板材力学性能的研究 [J]. 四川冶金, 2006, 26(1): 30
18 Wu J, Xu L, Cui X X, et al. Hot isostatic pressing of large thin-wall cylindrical structure of Inconel 718 ring [J]. Aerosp. Sci. Technol., 2020, 63(16): 59
吴 杰, 徐 磊, 崔潇潇 等. 大尺寸薄壁Inconel 718环件粉末热等静压近净成形 [J]. 航空制造技术, 2020, 63(16): 59
19 Lu Z G, Wu J, Guo R P, et al. Hot deformation mechanism and ring rolling behavior of powder metallurgy Ti2AlNb intermetallics [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30(7): 621
20 Chang L T, Sun W R, Cui Y Y, et al. Preparation of hot-isostatic-pressed powder metallurgy superalloy Inconel 718 free of prior particle boundaries [J]. Mater. Sci. Eng. A, 2017, 682: 341
21 Xu L, Guo R P, Chen Z Y, et al. Mechanical property of powder compact and forming of large thin-wall cylindrical structure of Ti55 alloys [J]. Chin. J. Mater. Res., 2016, 30(1): 23
doi: 10.11901/1005.3093.2015.284
徐 磊, 郭瑞鹏, 陈志勇 等. Ti55合金的拉伸性能和薄壁筒体结构的成形 [J]. 材料研究学报, 2016, 30(1): 23
22 Zhang Y W, Liu J T, Han S B, et al. Discussion on the mechanism of micro-element Hf eliminating PPBS in powder metallurgy superalloy FGH96 [J]. Powder Metall. Ind., 2014, 24(5): 1
张义文, 刘建涛, 韩寿波 等. 微量元素Hf消除FGH96合金中原始粉末颗粒边界组织机制的探讨 [J]. 粉末冶金工业, 2014, 24(5): 1
23 Xu L, Tian X S, Wu J, et al. Hot isostatic microstructure and mechanical properties of Inconel 718 powder alloy prepared by hot isostatic pressing [J]. Acta Metall. Sin., 2023, 59(5): 693
doi: 10.11900/0412.1961.2021.00586
徐 磊, 田晓生, 吴 杰 等. 热等静压成形Inconel 718粉末合金的显微组织和力学性能 [J]. 金属学报, 2023, 59(5): 693
24 Tan L M. Effect of Co, W, Mo and C on microstructure and mechanical properties of FGH4097PM superalloy [D]. Beijing: Central Iron & Steel Research Institute, 2015
谭黎明. Co, W, Mo和C元素对粉末高温合金FGH4097组织和性能的影响 [D]. 北京: 钢铁研究总院, 2015
25 Tian X S, Wu J, Lu Z G, et al. Effect of powder size segregation on the mechanical properties of hot isostatic pressing Inconel 718 alloys [J]. J. Mater. Res. Technol., 2022, 21: 84
26 Wu J, Guo R P, Xu L, et al. Effect of hot isostatic pressing loading route on microstructure and mechanical properties of powder metallurgy Ti2AlNb alloys [J]. J. Mater. Sci. Technol., 2017, 33(2): 172
27 Yu C, Wu S C, Hu Y N, et al. Three-dimensional imaging of gas pores in fusion welded Al alloys by synchrotron radiation X-ray microtomography [J]. Acta Metall. Sin., 2015, 51(2): 159
doi: 10.11900/0412.1961.2014.00334
喻 程, 吴圣川, 胡雅楠 等. 铝合金熔焊微气孔的三维同步辐射X射线成像 [J]. 金属学报, 2015, 51(2): 159
28 Guo R P, Xu L, Zong Y P, et al. Characterization of prealloyed Ti-6AI-4V powders from EIGA and PREP process and mechanical properties of HIPed powder compacts [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 8: 735
29 Tvergaard V. On localization in ductile materials containing spherical voids [J]. Int. J. Fract., 1982, 18(4): 237
30 Aravas N. On the numerical integration of a class of pressure-dependent plasticity models [J]. Int. J. Numer. Meth. Eng., 1987, 24(7): 1395
31 Wu J. Preparation and mechanical properties optimization of powder metallurgy TiAlNb.5Mo alloys [D]. Beijing: University of Chinese Academmy of Sciences, 2016
吴 杰. 粉末冶金Ti-22Al-24Nb-0.5Mo合金的制备和性能调控 [D]. 北京: 中国科学院大学, 2016
[1] LI Peiyue, ZHANG Minghui, SUN Wentao, BAO Zhihao, GAO Qi, WANG Yanzhi, NIU Long. Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy[J]. 材料研究学报, 2024, 38(9): 651-658.
[2] WANG Xiaofeng, TAN Wei, FENG Guangming, LIU Jibo, LIU Xianbin, LU Han. Effect of Fe-rich Phase on Mechanical Properties of Al-Mg-Si Alloy[J]. 材料研究学报, 2024, 38(9): 701-710.
[3] SHAO Xia, BAO Mengfan, CHEN Shijie, LIN Na, TAN Jie, MAO Aiqin. Preparation and Lithium Storage Performance of Spinel-type Cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 High-entropy Oxide[J]. 材料研究学报, 2024, 38(9): 680-690.
[4] CEN Yaodong, JI Chunjiao, BAO Xirong, WANG Xiaodong, CHEN Lin, DONG Rui. Stress-Strain Field at the Fatigue Crack Tip of Pearlite Heavy Rail Steel[J]. 材料研究学报, 2024, 38(9): 711-720.
[5] LIU Qing'ao, ZHANG Weihong, WANG Zhiyuan, SUN Wenru. Low-cycle Fatigue Behavior of a Cast Ni-based Superalloy K4169 at 650oC[J]. 材料研究学报, 2024, 38(8): 621-631.
[6] LIU Shuo, ZHANG Peng, WANG Bin, WANG Kaizhong, XU Zikuan, HU Fangzhong, DUAN Qiqiang, ZHANG Zhefeng. Investigations on Strength-Toughness Relationship and Low Temperature Brittleness of High-speed Railway Axle Steel DZ2[J]. 材料研究学报, 2024, 38(8): 561-568.
[7] LOU Weidong, ZHAO Haidong, WANG Guo. Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber[J]. 材料研究学报, 2024, 38(8): 593-604.
[8] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[9] YUAN Xinzhong, WANG Cunjing, YAO Peng, LI Qiong, MA Zhihua, LI Pengfa. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors[J]. 材料研究学报, 2024, 38(7): 529-536.
[10] PENG Wenfei, HUANG Qiaodong, Moliar Oleksandr, DONG Chaoqi, WANG Xiaofeng. Effect of Heat Treatment on Mechanical Properties of a Novel Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr Alloy[J]. 材料研究学报, 2024, 38(7): 519-528.
[11] WANG Lijia, XU Junyi, HU Li, MIAO Tianhu, ZHAN Sha. Effect of Cryogenic Treatment on Mechanical Behavior of AZ31 Mg Alloy Sheet with Bimodal Non-basal Texture at Room Temperature[J]. 材料研究学报, 2024, 38(7): 499-507.
[12] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
[13] WANG Jinlong, WANG Huiming, LI Yingju, ZHANG Hongyi, LV Xiaoren. Pore Feature and Cracking Behavior of Cold-sprayed Al-based Composite Coatings under Reciprocating Friction[J]. 材料研究学报, 2024, 38(7): 481-489.
[14] YANG Pu, DENG Hailong, KANG Heming, LIU Jie, KONG Jianhang, SUN Yufan, YU Huan, CHEN Yu. Evaluation of Slip-cleavage Competition Failure Mechanisms for Titanium Alloys Induced by Microstructure in Very-high-cycle Fatigue Regime[J]. 材料研究学报, 2024, 38(7): 537-548.
[15] WU Qianfang, HE Qun, CHANG Bing, QUAN Yuxin, HU Jingwen, LI Saisai, CAO Yingnan. Preparation and Neutron Shielding Properties of Fiberglass Based Thermal Insulating Porous Ceramics[J]. 材料研究学报, 2024, 38(6): 471-480.
No Suggested Reading articles found!