Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (8): 621-631    DOI: 10.11901/1005.3093.2023.537
ARTICLES Current Issue | Archive | Adv Search |
Low-cycle Fatigue Behavior of a Cast Ni-based Superalloy K4169 at 650oC
LIU Qing'ao1,2, ZHANG Weihong1,2(), WANG Zhiyuan1,2, SUN Wenru1,2()
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
Cite this article: 

LIU Qing'ao, ZHANG Weihong, WANG Zhiyuan, SUN Wenru. Low-cycle Fatigue Behavior of a Cast Ni-based Superalloy K4169 at 650oC. Chinese Journal of Materials Research, 2024, 38(8): 621-631.

Download:  HTML  PDF(23834KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The low cycle fatigue behavior of nickel based cast superalloy K4169 at 650oC was studied, while its microstructure variation before and after test was assessed by means of SEM and TEM. The results show that the fatigue life of the alloy gradually decreases with the increasing strain. When the strain is 0.5% and 0.6%, the alloy experiences strain hardening within the early 2~200 cycles, followed by cyclic stability and cyclic softening, respectively; When the strain is 0.8% and 1.0%, the alloy exhibits continuous cyclic softening behavior; Initial cyclic hardening is related to the hindering effect of γ″ strengthening phases on the movement of dislocations, while cyclic softening is attributed to dislocations shearing γ″phases repeatedly. The Coffin-Manson equation for the relationship between the plastic strain amplitude and the reverse number of fatigue failure of the alloy exhibits a bilinear relationship. Observation of the microstructure shows that the cyclic deformation mode of the alloy at high and low strains is all dislocations shearing γ″ phase and slip, and the fatigue failure of the alloy under different strains all exhibits transgranular fracture. Therefore, the reason for the bilinear behavior of the alloy may be the transformation of deformation uniformity, and the non-Masing characteristic exhibited by the alloy also demonstrate the transformation of deformation uniformity.

Key words:  metallic materials      K4169 alloy      low-cycle fatigue      fracture behavior      Coffin-Manson relationship      deformation mechanism     
Received:  06 November 2023     
ZTFLH:  TG146.1+5  
Corresponding Authors:  ZHANG Weihong, Tel: (024)23971325, E-mail: whzhang@imr.ac.cn
SUN Wenru, Tel: (024)23971737, E-mail: wrsun@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.537     OR     https://www.cjmr.org/EN/Y2024/V38/I8/621

Fig.1  Schematic diagram of low cycle fatigue specimen size
Fig.2  Microstructure characteristics of K4169 alloy after heat treatment (a) SEM images showing precipitates (b) BSE images showing precipitates; (c) Coarsening γ″ phase; (d) Low magnification morphology of alloy structure; (e, f) bright- and dark-field TEM images of γ″-Ni3Nb,respectively; (g) TEM images of δ-Ni3Nb (Inset in Fig.2 shows the corresponding SAED pattern)
Element (%)CAlTiCrFeNiNbMo
MC18.450.026.020.60.81.9371.760.41
δ-Ni3Nb4.010.511.414.8314.0749.3412.763.07
γ-Ni-0.271.2618.9817.3254.744.852.57
Table 1  Energy dispersive spectroscopy (EDS) results of precipitates and matrix (mass fraction, %)
Fig.3  Cyclic hysteresis loops of alloy with the first cycle (a), Cyclic hysteresis loops of alloy with the half-life (b) and Masing curve of alloy (c)
Fig.4  Cyclic stress response curve of alloy
Fig.5  Cyclic hardening parameter D of alloy under different strains
Fig.6  Relationship between strain amplitudes (Δε/2) and number of reversals to failure (2Nf)
Fig.7  Macroscopic fracture morphology (a) Δεt = 0.5%; (b) Δεt = 0.6%; (c) Δεt = 1.0%
Fig.8  Microscopic fracture morphology (a, d, g) Δεt = 0.5%; (b, e, h) Δεt = 0.6%; (c, f, i) Δεt = 1.0%; (a~f) Morphology of fatigue propagation zone; (g~i) Morphology of fatigue final rupture
Fig.9  Fracture longitudinal section organization (a, b, c) Δεt = 0.5%; (d, e, f) Δεt = 0.6%; (g, h, i) Δεt = 1.0%
Fig.10  Secondary cracks on the longitudinal section of the fracture with a strain of 0.5%, 0.6%, and 1.0%, respectively (a~c) and the associated EBSD maps of the GB (Grain boundary), IPF and KAM with a strain of 1.0% are shown in (d~f)
Fig.11  HRTEM and IFFT image of the specimen with Δεt = 0.5%,Nf = 100 cycs: (a) The HRTEM micrograph of interdendritic γ″ and γ-matrix with the FFT pattern; (b, c) the corresponding inverse FFT images of areas b an c in (a), respectively; (d) The HRTEM micrograph of γ″ in matrix and γ-matrix with the FFT pattern; (e) The corresponding inverse FFT image of (d) (dislocation as marked with ‘T’)
Fig.12  TEM micrographs of fracture specimens under different strains (a) Bright field image with SAED pattern, Δεt = 0.5%;(b) Dark field image, Δεt = 0.5%; (c) Slip bands distribution, Δεt = 0.5%; (d) Bright field image with SAED pattern,Δεt = 1.0%; (e) Dark field image, Δεt = 1.0%; (f) Slip bands distribution, Δεt = 1.0%
1 El-bagoury N, Matsuba T, Yamamoto K, et al. Influence of heat treatment on the distribution of Ni2Nb and microsegregation in cast Inconel 718 alloy [J]. Mater. Trans., 2005, 46(11): 2478
2 Liu R, Wang X T, Hu P P, et al. Low cycle fatigue behavior of micro-grain casting K4169 superalloy at room temperature [J]. Prog. Nat. Sci., 2022, 32(6): 693
3 Zhang L K, Wu X D, Zou Y, et al. Effect of Nb content on microstructure and mechanical properties of K4169-type superalloy [J]. J. Mater. Eng. Perform., 2022, 31(5): 4204
4 Wu Y, Liu Y H, Kang M D, et al. Microstructure evolution of K4169 alloy during cyclic loading [J]. Acta Metall. Sin., 2020, 56(9): 1185
doi: 10.11900/0412.1961.2020.00026
吴 贇, 刘雅辉, 康茂东 等. K4169合金循环加载过程中的微观组织演变 [J]. 金属学报, 2020, 56(9): 1185
5 Teng Y J, Ou M Q, Xing W W, et al. Effect of nitrogen content on the microstructure and mechanical properties of K4169 alloy [J]. Rare Metal Mat. Eng., 2019, 48(5): 1505
滕雨均, 欧美琼, 邢炜伟 等. 氮对K4169合金微观组织和力学性能的影响 [J]. 稀有金属材料与工程, 2019, 48(5): 1505
6 Rao G A, Kumar M, Srinivas M, et al. Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy Inconel 718 [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2003, 355(1-2): 114
7 Xu J H, Huang Z W, Jiang L. Effect of heat treatment on low cycle fatigue of IN718 superalloy at the elevated temperatures [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2017, 690: 137
8 Prakash D G L, Walsh M J, Maclachlan D, et al. Crack growth micro-mechanisms in the IN718 alloy under the combined influence of fatigue, creep and oxidation [J]. Int. J. Fatigue, 2009, 31(11-12): 1966
9 Bhaumik S K, Sujata M, Venkataswamy M A. Fatigue failure of aircraft components [J]. Eng. Fail. Anal., 2008, 15(6): 675
10 Lingli S B, Han Y F, Wang J, et al. Effects of heat treatment on microstructure and stress rupture properties of K4169 investment castings after hot isostatically pressed treatment [J]. Special Casting & Nonferrous Alloys, 2016, 36(10): 1013
凌李石保, 韩延峰, 王 俊 等. 热处理对热等静压K4169合金组织及高温持久性的影响 [J]. 特种铸造及有色合金, 2016, 36(10): 1013
11 Huang T W, Liu L, Yang A M, et al. Effect of structure refinement by addition of refiner on LCF properties of cast superalloy K4169 [J]. J. Mater. Eng., 2004, (11): 22
黄太文, 刘 林, 杨爱民 等. 化学法细化高温合金K4169的低周疲劳性能研究 [J]. 材料工程, 2004, (11): 22
12 Wang K, Wang J, Kang M D, et al. Effect of hot isostatic pressing on microstructures and properties of superalloy K4169 [J]. Chin. J. Nonferr. Mater., 2014, 24(5): 1224
王 恺, 王 俊, 康茂东 等. 热等静压对K4169高温合金组织与性能的影响 [J]. 中国有色金属学报, 2014, 24(5): 1224
13 Liu Y H, Kang M D, Wu Y, et al. Crack formation and microstructure-sensitive propagation in low cycle fatigue of a polycrystalline nickel-based superalloy with different heat treatments [J]. Int. J. Fatigue, 2018, 108: 79
14 Fouenier D, Pineau A. Low-cycle fatigue behavior of Inconel 718 at 298K and 823K [J]. Metall. Mater. Trans. A, 1977, 8(7): 1095
15 Bhattacharyya A, Sastry G V S, Kutumbarao V V. On the dual slope coffin-manson relationship during low cycle fatigue of ni-base alloy In718 [J]. Scr. Mater., 1997, 36(4): 411
16 Sanders T H, Frishmuth R E, Embley G T. Temperature-dependent deformation mechanisms of alloy 718 in low-cycle fatigue [J]. Metall. Mater. Trans. A, 1981, 12(6): 1003
17 Xiao L, Chen D L, Chaturvedi M C. Low-cycle fatigue behavior of Inconel 718 superalloy with different concentrations of boron at room temperature [J]. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2005, 36A(10) : 2671
18 Xiao L, Chen D L, Chaturvedi M C. Effect of boron on the low-cycle fatigue behavior and deformation structure of Inconel 718 at 650oC [J]. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2004, 35A(11) : 3477
19 Zhang X C, Li H C, Zeng X, et al. Fatigue behavior and bilinear coffin-manson plots of ni-based GH4169 alloy with different volume fractions of delta phase [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2017, 682: 12
20 Gao S Y, Wang Y W, Su R, et al. Low-cycle fatigue behavior of GH4169 superalloy [J]. Rare Metal Mat. Eng., 2022, 46(3): 289
高圣勇, 王一雯, 苏 孺 等. GH4169高温合金低周疲劳变形行为研究 [J]. 稀有金属材料与工程, 2022, 46(3): 289
21 Praveen K V U, Singh V. Effect of heat treatment on coffin-manson relationship in lcf of superalloy IN718 [J]. Mater.Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2008, 485(1-2): 352
22 Banerjee A, Sahu J K, Paulose N, et al. Micromechanism of cyclic plastic deformation of alloy IN718 at 600oC [J]. Fatigue Fract. Eng. Mater. Struct., 2016, 39(7): 877
23 Krishna E H, Prasad K, Singh V, et al. A comparative evaluation of low cycle fatigue behavior of conventional and modified Inconel 718 [J]. Trans. Indian Inst. Met., 2010, 63(2-3): 515
24 Mahobia G S, Paulose N, Mannan S L, et al. Effect of hot corrosion on low cycle fatigue behavior of superalloy IN718 [J]. Int. J. Fatigue, 2014, 59: 272
25 Guo J T. Materials Science and Engineering for Superalloys [M]. Beijing: Science Press, 2010: 482
郭建亭. 高温合金材料学上册 [M]. 北京: 科学出版社, 2010: 482
26 Li Y J, Liu R, He J S, et al. Effect of different heat treatment processes on microstructure and mechanical propertiesof K4169 superalloy [J]. J. Aeronaut. Mater., 2021, 41(4): 119
李妍佳, 柳 瑞, 何金珊 等. 热处理工艺对K4169高温合金组织和力学性能的影响 [J]. 航空材料学报, 2021, 41(4): 119
doi: 10.11868/j.issn.1005-5053.2021.000030
27 Kong W W, Yuan C, Zhang B N, et al. Investigation on low-cycle fatigue behaviors of wrought superalloy GH4742 at room-temperature and 700oC [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct Process., 2019, 751: 226
28 Zhang G X, Long A P, Xiao L, et al. Analysis of low cycle fatigue behavior and life prediction model of a new powder superalloy [J]. Rare Metal Mat. Eng., 2021, 50(8): 2789
张高翔, 龙安平, 肖 磊 等. 一种新型粉末高温合金的低周疲劳行为与寿命预测模型分析 [J]. 稀有金属材料与工程, 2021, 50(8): 2789
29 Zhang S Z, Li L, Hou X Q. Low-cycle fatigue of the second generation directionally solidified superalloy [J]. Journal of Mechanical Strength, 2017, 39(2): 311
张仕朝, 李 莉, 侯学勤. 第二代定向柱晶高温合金低周疲劳行为研究 [J]. 机械强度, 2017, 39(2): 311
30 Yao J, Guo J T, Yuan C, et al. Low cycle fatigue behavior of cast nickel base superalloy K52 [J]. Acta Metall. Sin., 2005, (4): 357
姚 俊, 郭建亭, 袁 超 等. 铸造镍基高温合金K52的低周疲劳行为 [J]. 金属学报, 2005, (4): 357
31 Zhong Z H, Gu Y F, Yuan Y, et al. On the low cycle fatigue behavior of a ni-base superalloy containing high Co and Ti contents [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2012, 552: 434
32 Kim I S, Choi B G, Jung J E, et al. Effect of microstructural characteristics on the low cycle fatigue behaviors of cast ni-base superalloys [J]. Mater. Charact., 2015, 106: 375
33 Xie J, Shu D L, Hou G C, et al. Low-cycle fatigue behavior of K416B ni-based superalloy at 650oC [J]. J. Cent. South Univ., 2021, 28(9): 2628
34 Zhong Q P, Zhao Z H, Zhang Z. Development of "fractography" and research of fracture micromechanism [J]. J. Mech. Strength, 2005, (3): 358
钟群鹏, 赵子华, 张 峥. 断口学的发展及微观断裂机理研究 [J]. 机械强度, 2005, (3): 358
35 Yu D L, Zhang D F, Dai Q W, et al. Effect of stress ratio on high cycle fatigue properties in Mg-6Zn-1Mn alloy [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2018, 711: 624
36 Liu Y H, Wu Y, Kang M D, et al. Fracture mechanisms induced by microporosity and precipitates in isothermal fatigue of polycrystalline nickel based superalloy [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct Process., 2018, 736: 438
37 Zhang A W, Yang Y, Zhang S, et al. Distribution of phosphorus and its effects on precipitation behaviors and tensile properties of IN718C cast superalloy [J]. Acta Metall. Sin.-Engl. Lett., 2019, 32(7): 887
38 Hou K L, Wang M, Ou M Q, et al. Effects of microstructure evolution on the deformation mechanisms and tensile properties of a new ni-base superalloy during aging at 800oC [J]. J. Mater. Sci. Technol., 2021, 68: 40
39 Xiao L, Chen D L, Chaturvedi M C. Cyclic deformation mechanisms of precipitation-hardened Inconel 718 superalloy [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2008, 483-84: 369
40 Hou K L, Ou M Q, Wang M, et al. Low cycle fatigue and high cycle fatigue of K4750 Ni-based superalloy at 600oC: analysis of fracture behavior and deformation mechanism [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct Process., 2021, 820: 141588
[1] LIU Shuo, ZHANG Peng, WANG Bin, WANG Kaizhong, XU Zikuan, HU Fangzhong, DUAN Qiqiang, ZHANG Zhefeng. Investigations on Strength-Toughness Relationship and Low Temperature Brittleness of High-speed Railway Axle Steel DZ2[J]. 材料研究学报, 2024, 38(8): 561-568.
[2] LOU Weidong, ZHAO Haidong, WANG Guo. Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber[J]. 材料研究学报, 2024, 38(8): 593-604.
[3] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[4] YUAN Xinzhong, WANG Cunjing, YAO Peng, LI Qiong, MA Zhihua, LI Pengfa. Preparation of N and O Co-doped Carbon Materials by Salt Sealing Method for Electrode of Supercapacitors[J]. 材料研究学报, 2024, 38(7): 529-536.
[5] PENG Wenfei, HUANG Qiaodong, Moliar Oleksandr, DONG Chaoqi, WANG Xiaofeng. Effect of Heat Treatment on Mechanical Properties of a Novel Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr Alloy[J]. 材料研究学报, 2024, 38(7): 519-528.
[6] WANG Lijia, XU Junyi, HU Li, MIAO Tianhu, ZHAN Sha. Effect of Cryogenic Treatment on Mechanical Behavior of AZ31 Mg Alloy Sheet with Bimodal Non-basal Texture at Room Temperature[J]. 材料研究学报, 2024, 38(7): 499-507.
[7] CHEN Shijie, BAO Mengfan, LIN Na, YANG Haiqin, MAO Aiqin. Effect of Zn Content on Lithium Storage Properties of Rock Salt Type High Entropy Oxides[J]. 材料研究学报, 2024, 38(7): 508-518.
[8] WANG Jinlong, WANG Huiming, LI Yingju, ZHANG Hongyi, LV Xiaoren. Pore Feature and Cracking Behavior of Cold-sprayed Al-based Composite Coatings under Reciprocating Friction[J]. 材料研究学报, 2024, 38(7): 481-489.
[9] YANG Pu, DENG Hailong, KANG Heming, LIU Jie, KONG Jianhang, SUN Yufan, YU Huan, CHEN Yu. Evaluation of Slip-cleavage Competition Failure Mechanisms for Titanium Alloys Induced by Microstructure in Very-high-cycle Fatigue Regime[J]. 材料研究学报, 2024, 38(7): 537-548.
[10] WU Qianfang, HE Qun, CHANG Bing, QUAN Yuxin, HU Jingwen, LI Saisai, CAO Yingnan. Preparation and Neutron Shielding Properties of Fiberglass Based Thermal Insulating Porous Ceramics[J]. 材料研究学报, 2024, 38(6): 471-480.
[11] WANG Jun, WANG Xuanli, LIU Shuang, SONG Rui, SONG Xiwen. Effect of Mn Doping on Microstructure and Thermal Conductivity of (Y0.4Er0.6)3Al5O12 Ceramics Material for Thermal Barrier Coating[J]. 材料研究学报, 2024, 38(6): 463-470.
[12] GUO Zhinan, ZHAO Qiang, LI Shuying, WANG Junli, XU Lin, SHANG Jianpeng, GUO Yong. Preparation and Degradation Performance of Composite Photocatalyst of Two-Dimensional Layered ZnNiAl-LDH/ Cuprous Oxide Particles[J]. 材料研究学报, 2024, 38(6): 423-429.
[13] CUI Yunqiu, NIU Chunjie, LV Jianhua, NI Weiyuan, LIU Dongping, LU Na. Effect of Helium Ions Irradiation at High Temperature on Surface Morphology of Tungsten[J]. 材料研究学报, 2024, 38(6): 437-445.
[14] WANG Wei, CHANG Wenjuan, LV Fanfan, XIE Zelei, YU Chengcheng. Preparation and Tribological Properties of Fluorinated Boron Nitride Nanosheets Water-based Additive[J]. 材料研究学报, 2024, 38(6): 410-422.
[15] TAN Yiling, LI Shichun, SUN Jie. Preparation of Metal-organic Framework Porous Glass agSALEM-2[J]. 材料研究学报, 2024, 38(5): 373-378.
No Suggested Reading articles found!