Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (4): 255-262    DOI: 10.11901/1005.3093.2017.452
ARTICLES Current Issue | Archive | Adv Search |
Initial Corrosion Behavior of Galvanized Steel in Atmosphere by Qinghai Salt Lake
Dan ZHANG1,2, Zhenyao WANG1(), Yongzhang ZHOU2, Yuwei LIU1, Qi YIN1, Gongwang CAO1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Nanjing Tech University, Nanjing 211816, China
Cite this article: 

Dan ZHANG, Zhenyao WANG, Yongzhang ZHOU, Yuwei LIU, Qi YIN, Gongwang CAO. Initial Corrosion Behavior of Galvanized Steel in Atmosphere by Qinghai Salt Lake. Chinese Journal of Materials Research, 2018, 32(4): 255-262.

Download:  HTML  PDF(4649KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of galvanized steel in the atmosphere by Qinghai Salt Lake at Northwest China was studied by means of weightlessness analysis, scanning electron microscopy (SEM), X-ray diffractometer (XRD) and electrochemical analysis. The results showed that the corrosion weight loss of galvanized steel in the atmosphere by the Salt Lake was comparatively large, and the corrosion rate increased firstly and then tended to be stable. Corrosion products were mainly composed of Zn5(OH)8Cl2·H2O, Zn5(CO)3(OH)6 and Zn4SO4(OH)6·3H2O,as well as lots of dust. The protective effectiveness for the substrate of the corrosion product layer decreased for a while and then tended to be stabilized during the corrosion process. The dust with high chloride salt greatly affected the corrosion process.

Key words:  materials failure and protection      Qinghai salt lake      galvanized steel      atmospheric corrosion      corrosion product      electrochemical technique     
Received:  27 July 2017     
Fund: Supported by National Natural Science Foundation of China (Nos. 5161197 & 5160119)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.452     OR     https://www.cjmr.org/EN/Y2018/V32/I4/255

Fig.1  Mass loss and corrosion rate of galvanized steel during exposure for different time
Fig.2  XRD patterns of galvanized steel after exposure for 6 (a), 12 and 24 months (b)
Fig.3  Macro appearances of galvanized steel after exposure for 6 (a), 12 (b) and 24 months (c)
Fig.4  SEM image of galvanized steel after exposure for 6 (a), 12 (b) and 24 months (c)
Fig.5  Cross section morphologies of corrosion product layer of galvanized steel after exposure for 6 (a), 12 (b) and 24 months (c)
Position
No.
Mole fraction/%
C O Mg Al Si S Cl K Ca Fe Zn
1 48.14 36.93 1.15 0 0 2.07 1.23 0 1.71 0.69 8.07
2 34.87 52.01 4.66 0.55 0.90 0.16 0.37 0.18 5.13 0.27 0.89
3 38.74 40.08 2.65 0.41 1.13 0.91 3.30 0.34 0.16 4.19 8.08
4 28.87 48.99 2.15 0 0.59 2.11 2.64 0.35 0.19 0.26 13.84
5 3.64 66.95 3.42 5.5 13.88 0.24 0.42 3.25 0.71 1.69 0.32
6 26.98 54.09 0.44 3.47 9.86 2.01 0.16 0.15 0.19 0.22 0.44
Table 1  EDS results of elements at different positions shown in Fig.5
Fig.6  EIS of galvanized steel corroded for different exposure time (a) Nyquist, (b) Bode
Fig.7  Equivalent circuit of EIS of galvanized steel
Corrosion
time/month
Rs/
Ω·cm2
Q1/
(Ω·cm2·Sn)-1
n1 Rr/
Ω·cm2
Q2/
(Ω·cm2·Sn)-1
n2 Rt/
Ω·cm2
6 39 5.62×10-6 0.800 7162 5.3×10-4 0.800 2771
12 5001 1.83×10-4 0.462 554 1.2×10-3 0.800 1225
24 96 7.08×10-6 0.698 1033 2.3×10-3 0.558 716
Table 2  Fitted EIS parameters of galvanized steel
Fig.8  EIS parameters of RrRt and Rp as function of exposure time
[1] Zhang X G.Corrosion and Electrochemistry of Zinc[M]. Metallurgical Industry Press, 2008: 3
[2] Zhang X G.Corrosion of zinc and zinc alloys[J]. Corros. Prot., 2006, 27: 41(章小鸽. 锌和锌合金的腐蚀[J]. 腐蚀与防护, 2006, 27: 41)
[3] Townsend H E.Continuous hot dip coatings [A]. Reidenbach F. ASM Handbook Volume 5: Surface Engineering[C]. Materials Park, OH: ASM International, 1994: 339
[4] Wetzel D.Batch hot dip galvanized coatings [A]. Reidenbach F. ASM Handbook Volume 5: Surface Engineering[C]. Materials Park, OH: ASM International, 1994: 360
[5] Li G Y, Ma M T.Auto steels production in China-status and prospect[J]. Steel Roll., 2014, 31(4): 22(李光瀛, 马鸣图. 我国汽车板生产现状及展望[J]. 轧钢, 2014, 31(4): 22)
[6] Odnevall I, Leygraf C.Formation of NaZn4Cl(OH)6SO4·6H2O in a marine atmosphere[J]. Corros. Sci., 1993, 34: 1213
[7] Guttman H.Effects of atmospheric factors on the corrosion of rolled zinc [A]. Guttman H, Sereda P J. ASTM STP 435 Metal Corrosion in the Atmosphere[C]. Philadelphia, PA: ASTM, 1968: 223
[8] Johansson E, Gullman J.Corrosion study of carbon steel and zinc-comparison between field exposure and accelerated tests [A]. Kirk W W, Lawson H H. ASTM STP 1239 Atmospheric Corrosion[C]. Philadelphia, PA: American Society for Testing and Materials, 1995: 240
[9] Liu A Q, Xiao K, Li X G, et al.Comparison of corrosion behavior of pure Zn and Zn-Al alloy coating in serious Xisha marine atmosphere environment[J]. Therm. Spray Technol., 2005, 7(4): 46(刘安强, 肖葵, 李晓刚等. Zn和ZnAl合金涂层在西沙严酷海洋大气环境下的腐蚀行为的比较[J]. 热喷涂技术, 2005, 7(4): 46)
[10] Zhu Z P, Zuo X D, Yin Z H.Zinc corrosion behavior in simulated industrial atmospheric environment[J]. Equipm. Environ. Eng., 2015, 12(4): 1(朱志平, 左羡第, 银朝晖. 锌在模拟工业大气环境下的腐蚀行为研究[J]. 装备环境工程, 2015, 12(4): 1)
[11] Svensson J E, Johansson L G.A laboratory study of the initial stages of the atmospheric corrosion of zinc in the presence of NaCl; Influence of SO2 and NO2[J]. Corros. Sci., 1993, 34: 721
[12] Wang Z Y, Yu G C, Zheng Y P, et al.Investigation on interrelation of accelerated corrosion testing and atmospheric exposure of zinc[J]. J. Chin. Soc. Corros. Prot., 1999, 19: 239(王振尧, 于国才, 郑逸苹等. 锌的加速腐蚀与大气暴露腐蚀的相关性研究[J]. 中国腐蚀与防护学报, 1999, 19: 239)
[13] Liu Y W, Cao G W, Wang Z Y, et al.Atmospheric corrosion behavior of galvanized steel at Hongyanhe nuclear power station[J]. Surf. Technol., 2016, 45(3): 152(刘雨薇, 曹公望, 王振尧等. 镀锌钢在红沿河大气环境中的腐蚀行为[J]. 表面技术, 2016, 45(3): 152)
[14] Zhang C, Li D C, Gao H L, et al.Corrosion resostance of thermo-zinc steel structure in soil and atmospheric in lake area of Qinghai province[J]. J. Xi’an Shiyou Univ., 1986, 1(2): 24(张超, 李栋才, 高惠临等. 热浸锌钢结构在青海西部盐湖地区土壤与大气中耐腐蚀性能研究[J]. 西安石油学院学报, 1986, 1(2): 24)
[15] Sun C X.Effects of bare metal and electroplating on atmospheric corrosion in the Qinghai-Tibet Plateau and the effect of relative humidity onmetal corrosion in simulated salt lake atmosphere[J]. Electr. Appl., 1979(2): 1(孙昌祥. 裸金属和电镀层在青藏高原大气曝晒结果及在模拟盐湖大气下相对湿度对金属腐蚀影响的研究[J]. 日用电器, 1979(2): 1)
[16] Xiao Y D, Wang G Y, Li X G, et al.Corrosion behavior of atmospheric environment and corrosion feature of materials in our western area[J]. J. Chin. Soc. Corros. Prot., 2003, 23: 248(萧以德, 王光雍, 李晓刚等. 我国西部地区大气环境腐蚀性及材料腐蚀特征[J]. 中国腐蚀与防护学报, 2003, 23: 248)
[17] Wang Z Y, Li Q X, Wang C, et al.Corrosion behaviors of Al alloy LC4 in Geermu salt lake atmosphere[J]. Chin. J. Nonferrous Met., 2007, 17: 24(王振尧, 李巧霞, 汪川等. LC4铝合金在格尔木盐湖大气环境中的腐蚀行为[J]. 中国有色金属学报, 2007, 17: 24)
[18] Li Q X, Wang Z Y, Han W, et al.Corrosion behavior of carbon steel in Qinghai salt lake atmospheric environment[J]. J. Chin. Soc. Corros. Prot., 2009, 29(5)(李巧霞, 王振尧, 韩薇等. 碳钢在青海盐湖大气环境下的腐蚀行为[J]. 中国腐蚀与防护学报, 2009, 29(05))
[19] Wang B B, Wang Z Y, Cao G W, et al.Localized corrosion of aluminum alloy 2024 exposed to salt lake atmospheric environment in Western China[J]. Acta Metall. Sin., 2014, 50: 49(王彬彬, 王振尧, 曹公望等. 2024铝合金在中国西部盐湖大气环境中的局部腐蚀行为 [J]. 金属学报, 2014, 50: 49)
[20] Zeng X G, Zheng X W, Gong M, et al.Atmospheric corrosion of carbon steel and galvanized steel in a test site at Dujiangyan city[J]. J. Chin. Soc. Corros. Prot., 2005, 35: 271(曾宪光, 郑兴文, 龚敏等. 碳钢和镀锌钢在都江堰大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2005, 35: 271)
[21] Odnevall I.Atmospheric corrosion of field exposed zinc [D]. Sweden: Royal Institute of Technology, 1994
[22] Wang Z Y, Yu G C, Han W.Atmospheric corrosion performance of zinc at several selected test sits in China[J]. Corros. Sci. Prot. Technol., 2003, 15: 191(王振尧, 于国才, 韩薇. 我国若干典型大气环境中的锌腐蚀[J]. 腐蚀科学与防护技术, 2003, 15: 191)
[23] Cao C N, Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002(曹楚南, 张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2002)
[24] Fan X, Wang J G, Zhou M, et al.Corrosion rate evaluation for grounding grid material by low-polarization curve method[J]. Proc. CSEE, 2012, 32(28): 192(范璇, 王建国, 周蜜等. 接地材料腐蚀速度弱极化曲线评价方法 [J]. 中国电机工程学报, 2012, 32(28): 192)
[25] Wu Y Z, Li W S, Ma C, et al.Evaluation of anticorrosion effect of passivated zinc electroplating coating by electrochemical methods[J]. Electr. Finish., 2008, 27(6): 36(吴育忠, 李伟善, 马冲等. 电镀锌钝化处理耐蚀效果的电化学评估[J]. 电镀与涂饰, 2008, 27(6): 36)
[26] Li H, Li Y G, Gao J X.Production technology of hot dip zincing and research status for passivation thereof[J]. Plat. Finish., 2008, 30(12): 16(李慧, 李运刚, 高建新. 热镀锌工艺及锌镀层钝化的研究现状[J]. 电镀与精饰, 2008, 30(12): 16)
[27] Liu S, Sun H Y, Fan J J, et al.Research progress on corrosion behavior of galvanized steel[J]. Mater. Prot., 2012, 45(12): 42(刘栓, 孙虎元, 范江吉等. 镀锌钢腐蚀行为的研究进展[J]. 材料保护, 2012, 45(12): 42)
[28] Mardera A R.The metallurgy of zinc-coated steel[J]. Progr. Mater. Sci., 2000, 45: 191
[29] Chung S C, Lin A S, Chang J R, et al.EXAFS study of atmospheric corrosion products on zinc at the initial stage[J]. Corros. Sci., 2000, 42: 1599
[30] Keddam M, Hugot-Le-Goff A, Takenouti H, et al. The influence of a thin electrolyte layer on the corrosion process of zinc in chloride-containing solutions[J]. Corros. Sci., 1992, 33: 1243
[31] Bernard M C, Hugot-Le Goff A, Massinon D, et al. Underpaint corrosion of zinc-coated steel sheet studied by in situ Raman spectroscopy[J]. Corros. Sci., 1993, 35: 1347
[32] Cheng Y L, Zhang Z, Cao F H, et al.A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers[J]. Corros. Sci., 2004, 46: 1649
[1] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[4] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[5] ZHANG Shaohua, LI Yanrui, WEI Yinghui, LIU Baosheng, HOU Lifeng, DU Huayun, LIU Xiaoda. Synergistic Effect of Multi-media on Carbon Steel Corrosion[J]. 材料研究学报, 2021, 35(10): 721-731.
[6] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[7] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[8] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[9] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[10] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[11] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[12] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[13] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[14] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[15] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
No Suggested Reading articles found!