Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (10): 721-731    DOI: 10.11901/1005.3093.2021.004
ARTICLES Current Issue | Archive | Adv Search |
Synergistic Effect of Multi-media on Carbon Steel Corrosion
ZHANG Shaohua1, LI Yanrui1, WEI Yinghui1,2(), LIU Baosheng1, HOU Lifeng2, DU Huayun2, LIU Xiaoda2
1.College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Cite this article: 

ZHANG Shaohua, LI Yanrui, WEI Yinghui, LIU Baosheng, HOU Lifeng, DU Huayun, LIU Xiaoda. Synergistic Effect of Multi-media on Carbon Steel Corrosion. Chinese Journal of Materials Research, 2021, 35(10): 721-731.

Download:  HTML  PDF(21679KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The interfacial reaction between carbon steel and CO2-Cl-, along with the effect of HCO3- on the formation of corrosion products scale on the steel in the solution of CO2-Cl--HCO3- at room temperature were investigated via electrochemical impedance spectroscopy and potentiodynamic polarization measurement. The results show that the addition of CO2 significantly increases the dissolution rate of carbon steel, whereas affects the Cl-concentration little and that, the addition of Cl- with high concentration can inhibit the dissolution of CO2, leading to a slight decrease in the corrosion rate of carbon steel. The formation of corrosion products film on the surface of carbon steel is not obvious after adding a small amount of HCO3- in the solution, correspondingly the formation of loose corrosion products cannot inhibit the further dissolution of carbon steel; However, excessive HCO3- addition may accelerate the precipitation of fine crystallites by increasing the supersaturation of FeCO3, and thus inhibiting the corrosion process.

Key words:  metallic materials      synergistic effect of multi-media      electrochemical techniques      corrosion mechanism     
Received:  12 January 2021     
ZTFLH:  TE988  
Fund: National Natural Science Foundation of China(52071227);Special Found Projects for Central Government Guidance to Local Science and Technology Development(YDZX20181400002967);Shanxi Municipal Science and Technology Project(20191102004);Key Scientific Research Project of Shanxi Province(201805D121003)
About author:  WEI Yinghui, Tel: 18003410625, E-mail: yhwei_tyut@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.004     OR     https://www.cjmr.org/EN/Y2021/V35/I10/721

CSiMnSPCrNiCuFe
0.220.2520.4520.00810.01220.02930.03610.1331Bal.
Table 1  Compositions of 20 carbon steel used in the experiment (mass fraction/%)
Fig.1  Macrostructure (a) and microstructure (b) of 20 carbon steel along with EDS results of (c) Region A and (d) Region B
Fig.2  Immersion experiment system
Fig.3  Potentiodynamic polarization curves (a) and Nyquist plots of carbon steel in solutions containing 0.2/1.0 mol/L Cl- and 0.2/1.0 mol/L Cl-+CO2 (1 bar), respectively (b), and the corresponding equivalent circuit diagrams (c)/(d) at 25℃
Fig.4  Representative fitting results of potentiodynamic polarization curves of carbon steel in solutions containing Cl- (a) and Cl-+CO2 (1 bar) (b), and the corresponding corrosion current density and corrosion rate (c)
Components0.2 mol/L Cl-1.0 mol/L Cl-0.2 mol/L Cl-+CO21.0 mol/L Cl-+CO2
Rs/Ω·cm211.906.80412.297.434
Qdl/10-4 F·cm-21.9101.8434.1753.054
ndl0.71850.73970.67900.7539
Rct/Ω·cm251876187566.8608.4
RL/Ω·cm2--16092145
L/H·cm-2--12602513
Table 2  Parameters of electrochemical impedance spectroscopy component of specimens in solutions containing 0.2/1.0 mol/L Cl- and 0.2/1.0 mol/L Cl-+CO2 (1 bar)
Fig.5  Surface morphologies (a~d) and EDS/XRD results of carbon steel immersed in solutions containing 0.2/1.0 mol/L Cl- and 0.2/1.0 mol/L Cl-+CO2 (1 bar) (e-f)/(g) at 25℃
Fig.6  Potentiodynamic polarization curves (a) and impedance diagrams of carbon steel (b/c) in solutions containing CO2 (1 bar)+0.1 mol/L Cl-+0/0.05/0.1/0.5 mol/L HCO3- at 60℃
[HCO3-]/mol·L-1Ecorr (V vs. SCE)Epass (V vs. SCE)Icorr /10-6 A·cm-2βa (V/dec)βc (V/dec)
0-0.7395-173.875182.5472.7
0.05-0.7457-164.961213.6366.1
0.1-0.75700.8716135.364219.8275.9
0.5-0.7825-0.1264103.323163.2151.6
Table 3  Parameters of potentiodynamic polarization curves of carbon steel in solutions containing CO2 (1 bar)+0.1 mol/L Cl-+0/0.05/0.1/0.5 mol/L HCO3-
Components0 mol·L-10.05 mol·L-10.1 mol·L-10.5 mol·L-1
Rs/Ω·cm214.7712.757.7155.83
CPEdl/10-4 F·cm-23.533.7294.9724.401
ndl0.84420.79020.74720.7542
Rct/Ω·cm2136.2196.3280.9373.4
Table 4  Parameters of Electrochemical Impedance Spectroscopy component values of carbon steel in solutions containing CO2 (1 bar)+0.1 mol/L Cl-+0/0.05/0.1/0.5 mol/L HCO3-
Fig.7  Cyclic voltammetry curve of carbon steel in solutions containing CO2 (1 bar)+0.1 mol/L Cl-+0 (a), 0.05 (b), 0.1 (c) and 0.5 (d) mol/L HCO3- at 60℃
Fig.8  SEM morphologies of carbon steel polarized to 1.25 V vs. SCE in solutions containing CO2 (1 bar)+0.1 mol/L Cl-+0 (a), 0.05 (b), 0.1 (c) and 0.5 (d) mol/L HCO3- at 60℃
Fig.9  Surface SEM morphologies of carbon steel after 24 h immersion tests in solutions containing CO2 (1 bar)+0.1 mol/L Cl-+0 (a), 0.05 (b), 0.1 (c) and 0.5 (d) mol/L HCO3- at 60℃
Fig.10  Cross-sectional SEM morphologies of carbon steel after 24 h immersion tests in solutions containing CO2 (1 bar)+0.1 mol/L Cl-+0 (a), 0.05 (b), 0.1 (c) and 0.5 (d) mol/L HCO3- at 60℃
Fig.11  XRD patterns of corrosion products formed on the steel surfaces immersed in solutions containing CO2 (1 bar)+0.1 mol/L Cl-+0.05/0.5 mol/L HCO3- over the immersion time period of 24 h at 60℃
Fig.12  Nyquist plots of impedance diagrams for carbon steel after 24 h immersion in solutions containing CO2 (1 bar)+0.1 mol/L Cl-+0/0.05/0.1/0.5 mol/L HCO3- at 60℃
1 Zhao J H, Wang X Q, Kang J, et al. Crack propagation behavior during DWTT for X80 pipeline steel processed via ultra-fast cooling technique [J]. Chin. J. Mater. Res., 2017, 31(10): 728
赵金华, 王学强, 康 健等. 超快冷工艺下X80管线钢的DWTT裂纹扩展行为 [J]. 材料研究学报, 2017, 31(10): 728
2 Han X, Yu S, Li H, et al. Preparation and Properties of CuO Superhydrophobic Coating on X90 Pipeline Steel [J]. Chin. J. Mater. Res., 2017, 31(9): 672
韩祥祥, 于思荣, 李好等. X90管线钢表面CuO超疏水涂层的制备和性能 [J]. 材料研究学报, 2017, 31(9): 672
3 Sun J, Zhang G, Liu W, et al. The formation mechanism of corrosion scale and electrochemical characteristic of low alloy steel in carbon dioxide-saturated solution [J]. Corros. Sci., 2012, 57: 131
4 Zhang G A, Lu M X, Wu Y S. Morphology and microstructure of CO2 corrosion scales [J]. Chin. J. Mater. Res., 2005, 19(5): 537
张国安, 路民旭, 吴荫顺. CO2腐蚀产物膜的微观形貌和结构特征 [J]. 材料研究学报, 2005, 19(5): 537
5 Nešić S. Key issues related to modelling of internal corrosion of oil and gas pipelines-A review [J]. Corros. Sci., 2007, 49(12): 4308
6 Nesic S, Postlethwaite J, Olsen S. An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions [J]. Corrosion, 1996, 52(4): 280
7 Zhu J Y, Tan C T, Bao F H, et al. CO2 corrosion behaviour of a novel Al-containing low Cr steel in a simulated oilfield formation water [J]. Chin. J. Mater. Res., 2020, 34(6): 443
朱金阳, 谭成通, 暴飞虎等. 一种新型含Al低Cr合金钢在模拟油田采出液环境下的CO2腐蚀行为 [J]. 材料研究学报, 2020, 34(6): 443
8 Han J, Nešić S, Yang Y. Spontaneous passivation observations during scale formation on mild steel in CO2 brines [J]. Electrochim. Acta, 2011, 56(15): 5396
9 Zhang S, Hou L, Du H, et al. A study on the interaction between chloride ions and CO2 towards carbonsteel corrosion [J]. Corros. Sci., 2020, 167: 108531
10 Xu L, Xiao H, Shang W, et al. Passivation of X65 (UNS K03014) carbon steel in NaHCO3 solution in a CO2 environment [J]. Corros. Sci., 2016, 109: 246
11 Liu Z, Gao X, Li J, et al. Corrosion behaviour of low-alloy martensite steel exposed to vapour-saturated CO2 and CO2-saturated brine conditions [J]. Electrochim. Acta, 2016, 213: 842
12 Barker R, Burkle D, Charpentier T, et al. A review of iron carbonate (FeCO3) formation in the oil and gas industry [J]. Corros. Sci., 2018, 142: 312
13 Linter B R, Burstein G T. Reactions of pipeline steels in carbon dioxide solutions [J]. Corros. Sci., 1999, 41(1): 117
14 Remita E, Tribollet B, Sutter E, et al. Hydrogen evolution in aqueous solutions containing dissolved CO2: quantitative contribution of the buffering effect [J]. Corros. Sci., 2008, 50(5): 1433
15 Almeida T D C, Bandeira M C E, Moreira R M. New insights on the role of CO2 in the mechanism of carbon steel corrosion [J]. Corros. Sci., 2017, 120: 239
16 Kahyarian A, Brown B, Nesic S. Electrochemistry of CO2 corrosion of mild steel: Effect of CO2 on iron dissolution reaction [J]. Corros. Sci., 2017, 129: 146
17 Ashley G W, Burstein G T. Initial stages of the anodic oxidation of iron in chloride solutions [J]. Corrosion, 1991, 47(12): 908
18 Darwish N A, Hilbert F, Lorenz W J, et al. The influence of chloride ions on the kinetics of iron dissolution [J]. Electrochim. Acta, 1973, 18(6): 421
19 Barcia O E, Mattos O R. The role of chloride and sulphate anions in the iron dissolution mechanism studied by impedance measurements [J]. Electrochim. Acta, 1990, 35(6): 1003
20 Mao X, Liu X, Revie R W. Pitting corrosion of pipeline steel in dilute bicarbonate solution with chloride ions [J]. Corrosion, 1994, 50(9): 651
21 Zhang G, Lu M, Chai C, et al. Effect of HCO3- concentration on CO2 corrosion in oil and gas fields [J]. Int. J. Min. Met. Mater., 2006, 13(1): 44
22 Wright R F, Brand E R, Ziomek-Moroz M, et al. Effect of HCO3- on electrochemical kinetics of carbon steel corrosion in CO2-saturated brines [J]. Electrochim. Acta, 2018, 290: 626
23 Onyejia L, Mohammed S, Kale G. Electrochemical response of micro-alloyed steel under potentiostatic polarization in CO2 saturated brine [J]. Corros. Sci., 2018, 138: 146
24 Popoola L T, Grema A S, Latinwo G K, et al. Corrosion problems during oil and gas production and its mitigation [J]. Int. J. Ind. Chem., 2013, 4(1): 35
25 Heuer J K, Stubbins J F. An XPS characteristic of FeCO3 films from CO2 corrosion [J]. Corros. Sci., 1999, 41(7): 1231
26 Zhang D L, Wei E Z, Jing H, et al. Construction of super-hydrophobic structure on surface of super ferritic stainless steel B44660 and its corrosion resistance [J]. Chin. J. Mater. Res., 2021, 35(1): 7
张大磊, 魏恩泽, 荆赫等. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能 [J]. 材料研究学报, 2021, 35(1): 7
27 Davies D H, Burstein G T. The effect of bicarbonate on the corrosion and passivation of iron [J]. Corrosion, 1980, 36(8): 416
28 Kermani M B, Morshed A. Carbon dioxide corrosion in oil and gas production-A compendium [J]. Corrosion, 2003, 59(8): 659
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!