Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (1): 1-8    DOI: 10.11901/1005.3093.2016.215
Orginal Article Current Issue | Archive | Adv Search |
Preparation and Anti-corrosion Properties of Waterborne Epoxy Coatings Containing Organic Microspheres
Na WANG(),Yinan ZHANG,Honghe LUAN,Jing ZHANG
School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
Cite this article: 

Na WANG,Yinan ZHANG,Honghe LUAN,Jing ZHANG. Preparation and Anti-corrosion Properties of Waterborne Epoxy Coatings Containing Organic Microspheres. Chinese Journal of Materials Research, 2017, 31(1): 1-8.

Download:  HTML  PDF(6010KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mono-dispersed organic microspheres of polymethyl methacrylate (PMMA) and polystyrene (PS) were prepared via soap-free emulsion polymerization, and which then were blended with waterborne epoxy resin to prepared composite paint of organic microspheres / waterborne epoxy composite. Finally the composite coating was applied on the surface of steel sheet by air spraying method. The organic microspheres were characterized by dynamic light scattering (DLS) and scanning electron microscope (SEM). The anti-corrosion property of the composite coatings with different P/B ratio (the ratio of pigment to base material) was investigated by electrochemical impedance spectroscopy (EIS)、salt spray test and adhesion test. The results show that the coatings with P/B=0.007 has the best performance in anti-corrosion to salt spray and adhesion to the substrate. The composite coating has better corrosion resistance than that of the coating of blank waterborne epoxy resin because of that the addition of organic microspheres can enhance the denseness of the coatings.

Key words:  materials failure and protection      waterborne epoxy resin      organic microsphere      electrochemical impedance spectroscopy( EIS )      anti-corrosion     
Received:  19 April 2016     
Fund: Supported by Natural Science Foundation of Liaoning Province of China (No.2015021016), International Cooperation Program of Science and Technology Bureau of Shenyang, China (No.F15-200-6-01), Liao-ning Baiqianwan Talents Program

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.215     OR     https://www.cjmr.org/EN/Y2017/V31/I1/1

Fig.1  Schematic representation of coating adhesion test
Fig.2  Organic microspheres morphology observed by SEM (a) PMMA organic microspheres, (b) PS organic microspheres
Fig.3  The organic microspheres particle-size distribution (a) PMMA organic microspheres, (b) PS organic microspheres
Fig.4  Nyquist diagrams of neat coating
Fig.5  Equivalent electrical circuits
Fig.6  Nyquist diagrams of the composite coatings pigmented with PMMA at different P/B (the ratio of pigment and base) (a: P/B=0.003 ; b: P/B=0.005;c: P/B=0.007; d: P/B=0.01)
Fig.7  Nyquist diagrams of the composite coatings pigmented with PS at different P/B (the ratio of pigmentand base) (a: P/B=0.003; b: P/B=0.005;c: P/B=0.007; d: P/B=0.01)
Fig.8  Time dependence of coating resistance
Fig.9  Mechanism of interaction between organic nano/microspheres and waterborne epoxy resin coating
Fig.10  Mechanism of anti-corrosion
Fig.11  Aspects of (a) epoxy; (b) PMMA P/B=0.003; (c) PMMA P/B=0.005; (d) PMMA P/B=0.007; (e) PMMA P/B=0.01; (f) PS P/B=0.003; (g) PS P/B=0.005; (h) PS P/B=0.007; (i) PS P/B=0.01 after exposure in salt spray for 600 h
Sample No. Component Adhesion / MPa
A
B
C
D
E
F
G
H
I
0.3%PMMA
0.5%PMMA
0.7%PMMA
1.0%PMMA
0.3%PS
0.5%PS
0.7%PS
1.0%PS
neat coating
8.99
9.02
9.15
8.92
8.76
8.67
8.98
8.46
7.51
Table 1  The data of coating adhesion test
Fig.12  Coating fracture morphology (A) 0.3%PMMA; (B) 0.5%PMMA; (C) 0.7%PMMA; (D) 1.0%PMMA; (E) 0.3%PS; (F) 0.5%PS; (G) 0.7%PS; (H) 1.0%PS; (I) epoxy
[1] T. Erdmenger, C. Guerrero-Sanchez, J. Vitz, et al.Recent developments in the utilization of green solvents in polymer chemistry[J]. Chem.Soc.Rev., 2010, 39(8): 3317
[2] X.Y. Xiao, C.C. Hao.Preparation of waterborne epoxy acrylate/silica sol hybrid materials and study of their UV curing behavior[J]. Colloids Surf. A Physicochem .Eng. Asp, 2010, 359(1): 82
[3] Y. Zhao, H. Ren, H. Dai, et al.Composition and expansion coefficient of rust based on X-ray diffraction and thermal analysis[J].Corros. Sci., 2011, 53(5): 1646
[4] X. Liu, Y. Wang, Y. Cao, et al.Study of dextrin-derived curing agent for waterborne epoxy adhesive[J].Carbohydr. Polym., 2011, 83(3): 1180
[5] N. Wang, K. Cheng, H. Wu, et al.Effect of nano-sized mesoporous silica MCM-41 and MMT on corrosion properties of epoxy coating[J]. Prog. Org. Coat., 2012, 75(4): 386
[6] A. Afzal, H.M. Siddiqi, N.nIqbal, et al. The effect of SiO2 filler content and its organic compatibility on thermal stability of epoxy resin[J]. J.Therm.Anal.Calorim., 2013, 111(1): 247
[7] Liu M M, Yin G L, Liu F C, et al.Preparation of montmorillonite by two-step intercalation and its effect on the corrosion resistance of epoxy coatings[J]. Chin. J. Mater. Res, 2014, 28(9): 668
[7] (刘明明, 尹桂来, 刘福春等. 二次插层蒙脱土的制备及其对环氧涂层耐蚀性的影响[J], 材料研究学报, 2014, 28(9): 668)
[8] S. Mallakpour, A. Barati.Efficient preparation of hybrid nanocomposite coatings based on poly (vinyl alcohol) and silane coupling agent modified TiO2 nanoparticles[J]. Prog. Org. Coat., 2011, 71(4): 391
[9] M. Salami-Kalajahi, V. Haddadi-Asl, S. Rahimi-Razin, et al.Investigating the effect of pristine and modified silica nanoparticles on the kinetics of methyl methacrylate polymerization[J]. Chem. Eng. J, 2011, 174(1): 368
[10] Chen B Y.Study on the synthesis and properties of functional polymethyl methacrylate composite microspheres [D]. Anhui: Anhui Jianzhu University, 2014(陈碧云. 功能化聚甲基丙烯酸甲酯复合微球制备与性能研究 [D]. 安徽: 安徽建筑大学, 2014)
[11] Y. Huang, H. Shih, H. Huang, et al.Evaluation of the corrosion resistance of anodized aluminum 6061using electrochemical impedance spectroscopy (EIS)[J]. Corros .Sci., 2008, 50(12): 3569
[12] Y. Shao, C. Jia, G. Meng, et al.The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel[J]. Corros. Sci., 2009, 51(2): 371
[13] M. Behzadnasab, S.M. Mirabedini, K. Kabiri, et al.Corrosion performance of epoxy coatings containing silane treated ZrO2 nanoparticles on mild steel in 3.5% NaCl solution[J]. Corros. Sci., 2011, 53(1): 89
[14] Yang L H, Liu F C, Han E H.Anti-corrosion performance studies of the nano-ZnO Polyurethene coatings[J] Chin. J. Mater. Res., 2009, 20(4): 354
[14] (杨立红, 刘福春, 韩恩厚. 纳米氧化锌改性聚氨酯复合涂层的防腐性能[J]. 材料研究学报, 2009, 20(4): 354)
[15] R. Mafi, S.M. Mirabedini, R. Naderi, et al.Effect of curing characterization on the corrosion performance of polyester and polyester/epoxy powder coatings[J]. Corros. Sci., 2008, 50(12): 3280
[16] He J, Yan R, Ma S N.Study on corrosion behaviors of epoxy coatings/substrate immersed in 3.5% NaCl solution by electrochemical methods[J]. China Surface Engineering, 2006, 19(2): 47
[16] (何杰, 阎瑞, 马世宁. 电化学方法研究环氧涂层/基体在3.5% NaCl 溶液中的腐蚀行为, 中国表面工程[J]. 2006, 19(2): 47)
[17] Wang N, Cheng K Q, Wu H, et al.Preparation and anti-corrosion properties of conductive polyaniline/waterborne epoxy resin coatings[J]. Chin. J. Mater. Res., 2013, 27(4): 432
[17] (王娜, 程克奇, 吴航等. 导电聚苯胺/水性环氧树脂防腐涂料的制备及防腐性能[J]. 材料研究学报, 2013, 27(4): 432)
[18] M. Niknahad, S. Moradian, S.M. Mirabedini.The adhesion properties and corrosion performance of differently pretreated epoxy coatings on an aluminium alloy[J]. Corros. Sci., 2010, 52(6): 1948
[19] M. Schem, T. Schmidt, J. Gerwann, et al.CeO2-filled sol-gel coatings for corrosion protection of AA2024-T3 aluminium alloy[J]. Corros. Sci., 2009, 51(10): 2304
[1] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[4] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[5] YANG Xiaogang, CUI Shihong, LI Bin, WANG Chuanjie, HAN Jiejia. Preparation and Corrosion Resistance of Graphene/Acetic Acid Doped Polyaniline[J]. 材料研究学报, 2021, 35(5): 357-363.
[6] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[7] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[8] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[9] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[10] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[11] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[12] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[13] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[14] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[15] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
No Suggested Reading articles found!