Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (5): 357-363    DOI: 10.11901/1005.3093.2020.247
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Corrosion Resistance of Graphene/Acetic Acid Doped Polyaniline
YANG Xiaogang1, CUI Shihong1, LI Bin2(), WANG Chuanjie1, HAN Jiejia1
1.College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
2.College of Material Science Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Cite this article: 

YANG Xiaogang, CUI Shihong, LI Bin, WANG Chuanjie, HAN Jiejia. Preparation and Corrosion Resistance of Graphene/Acetic Acid Doped Polyaniline. Chinese Journal of Materials Research, 2021, 35(5): 357-363.

Download:  HTML  PDF(6403KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The primary doped products of RGO/PANI were synthesized via in situ polymerization method in acetic acid with graphene (RGO) and different proportions aniline (ANI) as raw materials, and then the secondary doped products of RGO/PANI were obtained via de-doping with ammonia and afterwards re-doping with acetic acid. The structure and morphology of the prepared products were characterized by IR, UV and SEM. Their anticorrosion performance was assessed by electrochemical workstation. The results show that the primary doped products with the mass ratio 1:10 of RGO to ANI had the best morphology and anti-corrosion property. The polyaniline grown on the surface of graphene is about 300~650 nm in length and 70~100 nm in diameter, and the corrosion inhibition efficiency was up to 73.19%. The products obtained by secondary doping of acetic acid had better morphology, higher corrosion inhibition efficiency and excellent corrosion resistance performance. The corrosion inhibition efficiency is up to 80.21%.

Key words:  composite      graphene      polyaniline      acetic acid      secondary doping      anti-corrosion     
Received:  22 June 2020     
ZTFLH:  TB332  
Fund: National Natural Science Foundation of China(41106070);State Key Laboratory of Heavy Oil Processing(SKLOP201603003)
About author:  LI Bin, Tel: 13153242817,E-mail: lbyxg95@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.247     OR     https://www.cjmr.org/EN/Y2021/V35/I5/357

Fig.1  SEM images of different doping state of PANI and RGO/ ANI in different proportion and different doping state (a) doped PANI, (b) re-doped PANI, (c) RGO/PANI5, (d) RGO/PANI10, (e) RGO/PANI15, (f) RGO/PANI20, (g) RGO/PANI25 and (h) RGO/re-doped PANI
Fig.2  Infrared spectra of doped product (a) and re-doped product (b)
Fig.3  Uv-Vis spectra of doped product (a) and re-doped product (b)
Fig.4  Polarization curves of doped product (a) and re-doped product (b)
RGO:ANI(mass ratio)Ecorr/mVbc/mV·dec-1ba/mV·dec-1Icorr/μA·cm-2IE/%
Bare steel--625.95389.74576.42924.032-
RGO-633.329132.66088.28314.28240.57
PANI-692.816102.24764.92212.42248.31
1:5-757.227136.95176.7799.15361.91
1:10-773.516142.29373.3166.44273.19
HAC1:15-747.692106.61670.5317.42569.10
1:20-759.947130.04671.9267.71367.91
1:25-767.345123.73085.2968.73063.67
Re-doped PANI-746.63685.53773.3979.36361.04
RGO/re-doped PANI10-780.98792.37059.4174.75480.21
Table 1  Fitting results of polarization curve
Fig.5  Electrochemical impedance spectroscopy of doped product (a) and redoped product (b)
Fig.6  Impedance spectrum equivalent circuit
RGO:ANI(mass ratio)OCP vs. SCE/mV

Rp

/Ω·cm2

Bare steel--625.953-
RGO-633.329356.3
PANI-692.816476.3
1:5-757.227713.2
1:10-773.5161209.0
HAC1:15-747.692883.5
1:20-759.9471070.0
1:25-767.345939.1
Re-doped PANI-746.6361248.0
RGO/re-doped PANI10-780.9872523.0
Table 2  Fitting results of electrochemical impedance spectroscopy
1 Zhang M, Wang X L, Yang T, et al. Polyaniline/graphene hybrid fibers as electrodes for flexible supercapacitors [J]. Synth. Met., 2020, 268: 116484
2 Wei D Y, Guo S K, Zhao Y N. Advances in the preparation and applications of graphene [J]. New Chem. Mater., 2011, 39(6): 11
魏德英, 国术坤, 赵永男. 石墨烯的制备与应用研究进展 [J]. 化工新型材料, 2011, 39(6): 11
3 Kyhl L, Nielsen S F, Čabo A G, et al. Graphene as an anti-corrosion coating layer [J]. Faraday Discuss., 2015, 180: 495
4 Yuan X H, Zhang Q F, Li J G. Corrosion of materials and Environmental Pollution [A]. Proceedings of National Corrosion Congress [C]. Yinchuan: China Society for Corrosion and Protection, 2011
袁训华, 张启富, 李金桂. 材料腐蚀与环境污染 [A]. 全国腐蚀大会 [C]. 银川: 中国腐蚀与防护学会, 2011
5 Wu Y S, Zheng J S. Electrochemical Protection and Corrosion Inhibitor Application Technology [M]. Beijing: Chemical Industry Press, 2006
吴荫顺, 郑家燊. 电化学保护和缓蚀剂应用技术 [M]. 北京: 化学工业出版社, 2006
6 Kim J, Kim S. Preparation and electrochemical analysis of graphene/polyaniline composites prepared by aniline polymerization [J]. Res. Chem. Int., 2014, 40: 2519
7 Cai K W, Zuo S X, Luo S P, et al. Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings [J]. RSC Adv., 2016, 6: 95965
8 Zou M M, Li X R, Shen Y D, et al. Preparation and properties of modified graphene oxide/polyaniline anticorrosive materials [J]. Fine Chem., 2018, 35: 891
邹明明, 李小瑞, 沈一丁等. 改性氧化石墨烯/聚苯胺防腐材料的制备及性能 [J]. 精细化工, 2018, 35: 891
9 Yang X G, Wang L, Jin S Y, et al. Synthesis and properties of Polyaniline Nanofibers secondary doped with phosphoric acid [J]. J. Chem. Eng. Chin. Univ., 2015, 29: 664
杨小刚, 王莉, 金思毅等. 磷酸二次掺杂聚苯胺纳米纤维的合成及其性能的研究 [J]. 高校化学工程学报, 2015, 29: 664
10 Wang P, Feng Y, Fang J, et al. Effect of feed ratios on energy storage of PANi/GO composites [J]. Electr. Comp. Mater., 2017, 36(9): 54
王攀, 冯玥, 方晶等. 原料配比对聚苯胺/氧化石墨烯复合材料储能的影响 [J]. 电子元件与材料, 2017, 36(9): 54
11 Gao T. Preparation and anti-corrosion property of the redoped polyaniline [D]. Qingdao: Ocean University of China, 2012
高婷. 二次掺杂聚苯胺的合成及其防腐性能的研究 [D]. 青岛: 中国海洋大学, 2012
12 Chang C H, Huang T C, Peng C W, et al. Novel anticorrosion coatings prepared from polyaniline/graphene composites [J]. Carbon, 2012, 50: 5044
13 Wei M. Preparation and properties of redoped pani nanomaterials [D]. Qingdao: Qingdao University of Science and Technology, 2018
魏民. 二次掺杂聚苯胺纳米材料的制备及其性能研究 [D]. 青岛: 青岛科技大学, 2018
14 Prashanth J. Reddy B V. Study on structure, vibrational analysis and molecular characteristics of some halogen substituted azido-phenylethanones using FTIR spectra and DFT [J]. J. Mol. Struct., 2018, 1155: 582
15 Fazli-Shokouhi S, Nasirpouri F, Khatamian M. Polyaniline-modified graphene oxide nanocomposites in epoxy coatings for enhancing the anticorrosion and antifouling properties [J]. J. Coat. Technol. Res., 2019, 16: 983
16 Zhao Y, Ma J Q, Chen K, et al. One-pot preparation of Graphene-based Polyaniline conductive Nanocomposites for anticorrosion coatings [J]. Nano, 2017, 12: 1750056
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!