Please wait a minute...
Chin J Mater Res  2011, Vol. 25 Issue (4): 391-398    DOI:
论文 Current Issue | Archive | Adv Search |
HVOF Preparation and Cycle Oxidation Behavior at 600oC of Nanostructured Ni60–TiB2 Composite Coating
WU Yaosha, QIU Wanqi, YU Hongya, ZHONG Xichun, LIU Zhongwu, ZENG Dechang, LI Shangzhou
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
Cite this article: 

WU Yaosha QIU Wanqi YU Hongya ZHONG Xichun LIU Zhongwu ZENG Dechang LI Shangzhou. HVOF Preparation and Cycle Oxidation Behavior at 600oC of Nanostructured Ni60–TiB2 Composite Coating. Chin J Mater Res, 2011, 25(4): 391-398.

Download:  PDF(1294KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Cycle oxidation resistance of a nanostructured Ni60–TiB2 composite coating sprayed by high velocity oxy–fuel(HVOF) at 600oC  in static air was investigated. The conventional Ni60–TiB2 composite coating was also investigated for comparison. The results show that oxide scale on the nanostructured Ni60–TiB2 composite coating consist of complete and continuous SiO2 scale, the fine uniform dispersed TiO2 particles and B2O3 scale spread on the serface of oxide scale.The oxidation process of the nanostructured and conventional Ni60–TiB2 composite coatings are controlled by a diffusion mechanism, and the nanostructured Ni60–TiB2 composite coating exhibits better cycle oxidation resistance than that of the conventional composite coating. The reasons can be attributed to the formation of the intact SiO2 protective layer, and the enhanced adhesion between oxide film and nanocrystalline coating.
Key words:  materials failure and protection      surface science      nanostructured coating      cycle oxidation      HVOF      TiB2     
Received:  01 April 2011     
ZTFLH: 

TB383

 
Fund: 

Supported by Key Projects of the Guangdong Provincial Science & Technology Program under Nos.2009A090100045, 2010A090200077 and 1011020500021; Project of the Zhongshan Civic Science & Technology Program No.20103A262.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2011/V25/I4/391

1 T.S.Sidhu, S.Prakash, R.D.Agrawal, Characterizations and hot corrosion resistance of Cr3C2–NiCr coating on Ni–base superalloys in an aggressive environment, Journal of Thermal Spray Technology, 15, 811(2006)

2 J.Stringer, Coatings in the electricity supply industry: past, present, and opportunities for the future, Surface and Coatings Technology, 108-109, 1(1998)

3 M.Mohanty, R.W.Smith, M.De Bonte, Sliding wear behavior of thermally sprayed 75/25 Cr3C2/NiCr wear resistant coatings, Wear, 198, 251(1996)

4 M.Roy, A.Pauschitz, J.Bernardl, Microstructure and mechanical properties of HVOF sprayed nanocrystalline Cr3C2–25(Ni20Cr) coating, Journal of Thermal Spray Technology, 15, 372(2006)

5 A.J.Horlock, D.G.McCartney, P.H.Shipway, Thermally sprayed Ni(Cr)-TiB2 coatings using powder produced by self-propagating high temperature synthesis: microstructure and abrasive wear behavior, Materials Science and Engineering A, 336, 88(2002)

6 M.Jones, A.J.Horlock, P.H.Shipway, A comparison of the abrasive wear behavior of HVOF sprayed titanium carbide- and titanium boride-based cermet coatings, Wear, 251, 1009(2001)

7 B.Lotfi, P.H.Shipway, D.G.McCartney, Abrasive wear behavior of Ni(Cr)-TiB2 coatings deposited by HVOF spraying of SHS-derived ceramic powders, Wear, 254, 340(2003)

8 R.A.Cutler, Engineered Materials Handbook: Ceramics and Glasses, vol. 4(Ohio, ASM International, 1991) p.787

9 Y.C.Zhu, Y.Ken, C.X.Ding, Tribological properties of nanostructured and conventional WC-Co coatings deposited by plasma spraying, Thin Solid Films, 388, 277(2001)

10 X.J.Zhang, G.J.He, C.Y.Dong, Microstructure and properties of Al2O3–13% TiO2 coatings sprayed using nanostructured powders, Rare Metals, 26, 391(2007)

11 J.O.Berghaus, B.Marple, C.Moreau, Suspension plasma spraying of nanostructured WC-12Co coatings, Journal of thermal spray technology, 15, 676(2006)

12 S.L.Liu, D.B.Sun, Z.S.Fan, The influence of HVAF powder feedstock characteristics on the sliding wear behavior of WC-NiCr coatings, Surface and Coatings Technology, 202, 4893(2008)

13 D.B.Lee, M.H.Kim, C.W.Yang, The oxidation of TiB2 particle-reinforced TiAl intermetallic composites, Oxidation of metals, 56, 215(2001)

14 A.Q.Ma, Z.M.Zhang, M.X.Jiang, The thermodynamic analysis on the oxidation of TiB2 material, Bulletin of the Chinese ceramic society, 28, 162(2009)

15 B.Lotfi, Elevated temperature oxidation behavior of HVOF sprayed TiB2 cermet coating, Transactions of Nonferrous Metals Society of China, 18, 262(2008)

16 S.Sampath, X.Y.Jiang, J.Matejicek, Substrate temperature effects on splat formation, microstructure development and properties of plasma sprayed coatings Part I :Case study for partially stabilized zirconium, Materials Science and Engineering A, 272, 181(1999)

17 X.Jiang, J.Matejicek, S.Sampath, Substrate temperature effects on the splat formation, microstructure development and properties of plasma sprayed coatings Part II: case study for molybdenum, Materials Science and Engineering A, 272, 189(1999)

18 K.Tao, X.L.Zhou, H.Cui, J.S.Zhang, Oxidation and hot corrosion behaviors of HVAF-sprayed conventional and nanostructured NiCrC coatings, Transactions of Nonferrous Metals Society of China, 19, 1151(2009)

19 S.Matthews, M.Hyland, B.James, Microhardness variation in relation to carbide development in heat treated Cr3C2–NiCr thermal spray coatings, Acta Materialia, 51, 4267(2003)

20 H.Luo, D.Goberman, L.Shaw, Indentation fracture behavior of plasma-sprayed nanostructured Al2O3–13wt.%TiO2 coatings, Materials Science and Engineering A, 346, 237(2003)

21 M.Gell, E.H.Jordan, Y.H.Sohn, Development and implementation of plasma sprayed nanostructured ceramic coatings, Surface and coatings technology, 146, 48(2001)

22 R.S.Lima, B.R.Marple, Enhanced ductility in thermally sprayed titania coating synthesized using a nanostructured feedstock, Materials Science and Engineering A, 395, 269(2005)

23 LI Meishuan, High temperature corrosion of metal (Beijing, metallurgical press, 2001) p.181

(李美栓,  金属的高温腐蚀  (北京, 冶金工业出版社, 2001) p.181)

24 C.Wagner, Reaktionstypen bei der oxidation von legierungen, Z.Elektrochem, 63, 772(1959)

25 G.J.Cao, L.Geng, Z.Z.Zheng, The oxidation of nanocrystalline Ni3Al fabricated by mechanical alloying and spark plasma sintering, Intermetallics, 15, 1672(2007)

26 F.H.Wang, Oxidation Resistance of Sputtered Ni3(A1Cr) Nanocrystalline Coating, Oxidation of Metals, 47, 247(1997)

27 F.Wang, H.Lou, S.Zhu, The mechanism of scale adhesion on sputtered microcrystalline CoCrAl films, Oxidation of metals, 45, 39(1996)

28 D.Y.Lee, M.L.Santella, I.M.Anderson, Thermal aging effects on the microstructure and short-term oxidation behavior of a cast Ni3Al alloy, Intermetallics, 13, 87(2005)

29 H.J.T.Ellingham, Transactions and communications, Journal of the Society of Chemical Industry, 63, 125(1944)

30 D.Chaliampalias, G.Vourlias, E.Pavlidou, Comparative examination of the microstructure and high temperature oxidation performance of NiCrBSi flame sprayed and pack cementation coatings, Applied Surface Science, 255, 3605(2009)
[1] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[4] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[5] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[6] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[7] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[8] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[9] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[10] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[11] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[12] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[13] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[14] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
[15] Xu ZHANG,Shanping LU. Corrosion Behavior of Ni-based Weld Metals with Different Mo Content in a Nitric Acid Aqueous Solution[J]. 材料研究学报, 2019, 33(6): 401-408.
No Suggested Reading articles found!