Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (1): 63-70    DOI: 10.11901/1005.3093.2024.137
ARTICLES Current Issue | Archive | Adv Search |
Performance of Polyurethane-based Composite Elastomer Cathodic Material for Anodic Bonding
ZHAO Haocheng1(), YAO Zhiguang2, YOU Xuerui1, ZHAO Lizhi1
1 Faculty of Energy Chemistry and Materials Engineering, Shanxi Institute of Energy, Jinzhong 030600, China
2 Faculty of Mechanical and Electrical Engineering, Shanxi Institute of Energy, Jinzhong 030600, China
Cite this article: 

ZHAO Haocheng, YAO Zhiguang, YOU Xuerui, ZHAO Lizhi. Performance of Polyurethane-based Composite Elastomer Cathodic Material for Anodic Bonding. Chinese Journal of Materials Research, 2025, 39(1): 63-70.

Download:  HTML  PDF(8531KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The application of anodic bonding, as an important technology in the semiconductor industry, in the field of flexible electronics encapsulation will be beneficial to the further popularization of the commercialization of flexible devices. The key solution is the preparation of high-performance polymer flexible substrates suitable for anodic bonding. Herein, three kinds of polyurethane-based composite elastomer cathodic materials (CPUEEs) for anodic bonding are prepared by room temperature casting, of which the microphase separation morphology can be observed by SEM. Results show that the CPUEEs present Td, 5% above 200 oC with thermal stability meets the requirements of anodic bonding, besides, the CPUEEs present amorphous structure with Tg lower than -45 oC, and their molecular segments have good low temperature flexibility, which can provide the necessary space for lithium ion migration during anodic bonding. The ionic conductivity of all samples at the bonding temperature meets the bonding requirements, and the ionic conductivity value of CPUEE3 modified by blending with PPC and SN is the highest up to 6.5 × 10-4 S·cm-1. The anodic bonding of CPUEEs and aluminum foil (Al) may be realized by heat-guided dynamic field anodic bonding technique. The bonding interface of CPUEEs-Al can be clearly observed in the SEM image, and the bonding strength of CPUEE3-Al can reach up to 1.15 MPa.

Key words:  organic ploymer materials      anodic bonding      polyurethane      ionic conductivity      flexible electronic device      encapsulation     
Received:  01 April 2024     
ZTFLH:  TB34  
Fund: National Natural Science Foundation of China(22306116);Natural Science Research Project of Shanxi Province(202203021211284)
Corresponding Authors:  ZHAO Haocheng, Tel: 18835184666, E-mail: zhaohc@sxie.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.137     OR     https://www.cjmr.org/EN/Y2025/V39/I1/63

SamplenTMP / nBDOPPC-LiTFSI / %SN-LiTFSI / %
CPUEE10.25∶0.6500
CPUEE20.25∶0.65100
CPUEE30.25∶0.651015
Table 1  Composition of CPUEEs
Fig.1  SEM images of surface of CPUEEs (a) CPUEE1, (b) CPUEE2, (c) CPUEE3
Fig.2  XRD patterns of CPUEEs
Fig.3  TGA (a) and DSC (b) curves of CPUEEs
SampleTg / oCTd, 5% / oCRb / Ω(55 oC)σ / S·cm-1(55 oC)
CPUEE1-48.072352923.4 × 10-4
CPUEE2-48.312542404.2 × 10-4
CPUEE3-49.652271546.5 × 10-4
Table 2  Thermal properties and ionic conductivities of CPUEEs
Fig.4  Electrochemical impedance spectroscopy (EIS) of CPUEEs at 55 ℃
Fig.5  Schematic diagram of anodic bonding of CPEECs-Al
Fig.6  Time-Current curves of CPUEEs-Al by electrostatic bonding
SamplePeak current / mABonding time / sMax load / NS/ mm2Tensile strength / MPa
CPUEE1-Al10.36329.5450.240.58
CPUEE2-Al11.66138.1350.240.76
CPUEE3-Al13.78057.9250.241.15
Table 3  Peak current, bonding time and interface strength of CPUEEs-Al by electrostatic bonding
Fig.7  SEM images of bonding interface of CPUEEs-Al
(a) CPUEE1-Al, (b) CPUEE2-Al, (c) CPUEE3-Al
Fig.8  EDS mapping of the bonded interface of Al sheet to CPUEE3
1 Yadav B, Mondal I, Bannur B, et al. Emulating learning behavior in a flexible device with self-formed Ag dewetted nanostructure as active element [J]. Nanotechnol., 2023, 35(1): 015205
2 Zheng Y, Cui T, Wang J, et al. Unveiling innovative design of customizable adhesive flexible devices from self-healing ionogels with robust adhesion and sustainability [J]. Chem. Eng. J., 2023, 471: 144617
3 Fu C, Liang L, Zhong H, et al. High stretchable and self-adhesive dual networks ionic gels and flexible devices application [J]. Polymer, 2023, 272: 125834
4 Han Y, Cui Y, Liu X, et al. A Review of Manufacturing Methods for Flexible Devices and Energy Storage Devices [J]. Biosensors, 2023, 13(9): 896
5 Li W, Feng Z, Kechao L, et al. Nano-copper enhanced flexible device for simultaneous measurement of human respiratory and electro-cardiac activities [J]. J. Nanobiotechnol., 2020, 18(7): 447
6 Lin Y X, Shen H L, Chen X Y, et al. Triboelectric nanogenerator-based anodic bonding of silicon to glass with an intermediate aluminum layer [J]. Sens. Actuators: A, 2021, 331: 112950
7 Yao F R, Pan M Q, Zhu Z J, et al. Ultra-low temperature anodic bonding of silicon and glass based on nano-gap dielectric barrier discharge [J]. J. Cent. South Univ., 2021, 28: 351
8 Knapkiewicz P. Ultra-low temperature anodic bonding of silicon and borosilicate glass [J]. Semicond. Sci. Technol., 2019, 34: 035005
9 Joyce R, George M, Bhanuprakash L, et al. Investigation on the effects of low-temperature anodic bonding and its reliability for MEMS packaging using destructive and non-destructive techniques [J]. J Mater Sci: Mater Electron, 2018, 29: 217
10 Szesz E M, Lepienski C M. Anodic bonding of titanium alloy with bioactive glass [J]. J. Non-Cryst. Solids, 2017: 471: 19
11 Zhang W X, Wang M X, Zhao H C, et al. Synthesis and characterization of electrolyte substrate materials based on hyperbranched polyurethane elastomers for anodic bonding [J]. J. Appl. Polym. Sci., 2021, 138: 50872
12 Zhao H C, Zhang W X, Yin X, et al. Conductive polyurethane elastomer electrolyte (PUEE) materials for anodic bonding [J]. RSC Adv. 2020, 10: 13267
doi: 10.1039/c9ra10944g pmid: 35492124
13 Zhao H C, Zhang W X, Yin X, et al. TMP-based hyperbranched polyurethane elastomer (HBPUE) packaging material applied to anodic bonding [J]. Chem. Pap., 2020, 74: 3975
14 Zhao H C, Liu C R, Du C, et al. Flexible anodic bonding for the bonding between elastomer and metal [J]. J. Appl. Polym. Sci., 2022, 139(33): e52780
15 Zhao H C, Liang F N, Liu Q X, et al. Anodic bonding applied to flexible packaging using elastomer composites [J]. Acta Materiae Compositae Sinica, 2021, 38(1): 111
赵浩成, 梁芳楠, 刘茜秀, 等. 应用于弹性体复合材料柔性封装的阳极键合[J]. 复合材料学报, 2021, 38(1): 111
16 Ding W F; Xu L. Batch fabrication of electrospun PAN/PU composite separators for safe lithium-ion batteries [J]. Batteries, 2024, 10: 6
17 Teng Q C, Huang Y, Wu H T, et al. Self-healing polyurethane elastomer with ultra-high mechanical strength and enhanced thermal mechanical properties [J]. Polymer, 2024, 290: 126579
18 Wu Y L, Zhang W X, Qian F, et al. An efficient phenylaminecarbazole-based three-dimensional hole-transporting materials for high-stability perovskite solar cells [J]. Dyes Pigm., 2020, 182: 108663
19 Mundinamani S. The choice of noble electrolyte for symmetric polyurethane-graphene composite supercapacitors [J]. Int. J. Hydrogen Energy, 2019, 44: 11240
20 Jee C H, Kang K S, Bae J H, et al. Ladder-type poly(3,4-ethylenedioxythiophene)-poly(ethyleneglycol)-polyurethane supramolecular network for gel polymer electrolyte [J]. Polym.-Plast. Technol. Eng., 2018, 57: 1518
21 Wang M X, Wei X Z, Zhang W X, et al. Fluorene-containing polyhedral oligomericsilsesquioxanes modified hyperbranched polymer for white light-emitting diodes with ultra-high color rendering index of 96 [J]. J. Solid State Chem., 2021, 298: 122122
22 Kopczynska P, Calvo-Correas T, Eceiza A, et al. Synthesis and characterisation of polyurethane elastomers with semi-products obtained from polyurethane recycling [J]. Eur. Polym. J., 2016: 85: 26
23 Ye J F, Wang F, Zuo Y, et al. Epoxy resin-modified thermo-reversible polyurethane with high strength, toughness, and self-healing performance [J]. Chin. J. Mater. Res., 2023, 37(4): 257
doi: 10.11901/1005.3093.2021.612
叶姣凤, 王 飞, 左 洋 等. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯 [J]. 材料研究学报, 2023, 37(4): 257
doi: 10.11901/1005.3093.2021.612
24 Zhao X Y; Jin R H; Niu Z H, et al. Fabrication of polyurethane elastomer/hindered phenol composites with tunable damping property [J]. Int. J. Mol. Sci., 2023, 37(04): 257-263
25 Khodaie M, Saeidi A, Khonakdar H A, et al. Improving nanoparticle dispersion and polymer crystallinity in polyvinylidene fluoride/POSS coatings using tetrahydrofuran as co-solvent [J]. Prog. Org. Coat. 2020, 140: 105534
26 Bao J J, Shi G J, Tao C, et al. Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries [J]. J. Power Sources, 2018, 389: 84
27 Du C, Liu C R, Yin X, et al. Effect of rare earth oxide CeO2 on the anodic bonding performance of PEG-based MEMS encapsulation materials [J]. Adv. Mech. Eng., 2021, 13: 16878140211007712
28 Pautkin V E. Physicochemical processes in alkaline glass with anodic bonding of glass and silicon [J]. Glass Ceram., 2021, 77: 329
29 Liu Y F, Dai T T, Xie P Q, et al. Shorting out bonding method for multi-stack anodic bonding and its application in wafer-level packaging [J]. Mod. Phys. Lett. B, 2020, 34: 2050369
30 Gao C W, Yang F, Zhang D C. Modeling of anodic bonding with SiO2 dielectric as interlayer [J]. J. Micromech. Microeng., 2020, 30: 105003
31 Behera B, Dhanekar S, Singh G, et al. Self-encapsulated DC MEMS switch using recessed cantilever beam and anodic bonding between silicon and glass [J]. Microsyst. Technol., 2020, 27: 863
32 Woetzel S, Ihring A, Kessler E, et al. Hermetic sealing of MEMS including lateral feed throughs and room-temperature anodic bonding [J]. J. Micromech. Microeng., 2018, 28: 075013
33 Wan Y J, Li Z W, Huang Z L, et al. Wafer-level self-packaging design and fabrication of mems capacitive pressure sensors [J]. Micromachines, 2022, 13(5): 738
34 Yu M Z, Chen Y, Wang Y B, et al. Plasma-activated high-strength non-isothermal anodic bonding for efficient fabrication of the micro atomic vapor cells [J]. J. Mater. Res. Technol., 2023, 27, 1046
35 Jia S, Jiang Z Y, Jiao B B, et al. The microfabricated alkali vapor cell with high hermeticity for chip-scale atomic clock [J]. Appl. Sci., 2022, 12(1): 436
36 Lin Y X, Shen H L, Chen X Y, et al. Triboelectric nanogenerator-based anodic bonding of silicon to glass with an intermediate aluminum layer [J]. Sens. Actuators: A, 2021, 331: 112950
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] ZENG Zhipeng, SONG Xiaoyan, SUN Yong, SONG Shuanglin, LU Wei, HE Zhenglong. Microstructure and Mechanical Property of Polyurethane/Water Glass Grouting Materials during Curing Process[J]. 材料研究学报, 2022, 36(11): 855-861.
[3] XU Wen, WANG Zhijie, ZHU Wenwen, PENG Zitong, YAO Chu, YOU Feng, JIANG Xueliang. Preparation and Sound Absorption Properties of MPP-polymers Layered Structure Materials[J]. 材料研究学报, 2021, 35(7): 535-542.
[4] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[5] PAN Ying, ZHAO Hongting. Preparation of Halloysite Based Layer-by-Layer Coating on Flexible Polyurethane Foam and Its Performance of Flame Retardant and Smoke Suppression[J]. 材料研究学报, 2021, 35(6): 449-457.
[6] WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. 材料研究学报, 2021, 35(10): 752-760.
[7] Ruiyan GUO, Guoli ZHANG, Hailiang YUE, Huan MA, Lianyun CHEN. Evaluation of Compression after Impact on Composite Laminates Coated with PU[J]. 材料研究学报, 2017, 31(7): 526-536.
[8] Qiuying LU, Hongwei JIANG. Polyether Modified MQ Resin Reinforced Polyurethane Elastomer[J]. 材料研究学报, 2017, 31(7): 489-494.
[9] Ying GU, Lizhu LIU, Xiaorui ZHANG, Ling WENG. Effect of Alumina-sol Modified Expandable Graphite on Flame Retardation of Semi-rigid Polyurethane Form[J]. 材料研究学报, 2017, 31(12): 918-924.
[10] Xing ZHOU, Bin HU, Wenqiang XIAO, Hao JIANG, Lijun ZHANG, Zhengjun WANG, Hailai LIN, Jun BIAN, Xinwei ZHAO. Preparation and Properties of Composites of Polyvinyl Alcohol Grafted Graphene Oxide/thermoplastic Polyurethane[J]. 材料研究学报, 2017, 31(11): 874-880.
[11] YUE Hailiang, ZHANG Guoli, WANG Zhuangzhi, GUO Ruiyan. Evaluation of Ressistance to Repeated Low-Velocity Impact of Composite Laminates with Polyurethane Coating[J]. 材料研究学报, 2016, 30(5): 379-387.
[12] Guoxing LI,Jingshan ZHAO,Ke SUN,Qiang WANG,Ming WANG. Study on Mechanical Property and Thermal Stability of In-situ Nanocomposites of Polyurethane/ Oxidized Graphene[J]. 材料研究学报, 2014, 28(12): 901-908.
[13] ZHOU Shengzhi, SONG Xiaoyan, CHENG Bowen, CHENG Guoqing, CHEN Tianjun. Characterization of Polyurethane / Polyhedral Oligomeric Silsesquioxanes (PU/POSS) Composites Fibers by Electrospinning Method[J]. 材料研究学报, 2013, 27(5): 520-525.
[14] HE Xianyun** QIU Yongliang WANG Yingjun,WU Gang,. Preparation and Properties of 3D Porous Novel Biodegradable Polyurethane Scaffolds[J]. 材料研究学报, 2013, 27(4): 391-396.
[15] LENG Cuiting LI Xiaorui FEI Guiqiang WANG Haihua. Synthesis and Electrochemical Properties of HDI Trimer Modified Polyurethane/Polypyrrole[J]. 材料研究学报, 2012, 26(5): 533-537.
No Suggested Reading articles found!