Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (2): 141-150    DOI: 10.11901/1005.3093.2023.097
ARTICLES Current Issue | Archive | Adv Search |
Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater
ZHOU Lichen()
Zhanjiang Branch of CNOOC (China) Co., Ltd., Zhanjiang 524000, China
Cite this article: 

ZHOU Lichen. Preparation of Fluorine Modified Titanium Dioxide Catalyst and Its Photocatalytic Degradation for Oilfield Wastewater. Chinese Journal of Materials Research, 2024, 38(2): 141-150.

Download:  HTML  PDF(5890KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The florine modification of titanium dioxide was realized by plasma discharge technique with C2H2F4 as F source, and the morphology and structure of the catalyst were characterized by XRD, XPS, UV-vis, PL, etc. The effectiveness of fluorine-modified titanium dioxide catalyst was studied in terms of the degradation of methylene blue and oilfield wastewater, and the corresponding influencing factors as well as the reusability of the catalyst were investigated. The results showed that for the corrosive medium of pH 6 with the addition of 8 g/L catalyst, the best degradation effect on oilfield wastewater was acquired with the COD removal rate up to 88%. For the corrosive medium with the presence of $\mathrm{HCO}_3^{-}$、$\mathrm{CO}_3^{2-}$、$\mathrm{PO}_4^{3-}$, and $\mathrm{SiO}_3^{2-}$, the photocatalytic induced reaction would be significantly inhibited, while Cl- had little effect on it. Besides, the hydroxyl radical (·OH) was more critical for the photocatalytic related reaction. It follows that after plasma induced fluorine modification, a large number of ≡Ti-F bond and oxygen defects could be produced on the surface of titanium dioxide, achieving fluorine dopped TiO2 gaps (Ti-O-F-Ti bond), in turn, the ≡Ti-F and oxygen defects can promote the transfer of photogenerated electron-holes to the surface of titanium dioxide, meanwhile, the fluorine dopped TiO2 gaps caused a hybrid valence band of titanium dioxide, consequently narrowing the band gap width from 2.98 eV to 2.82 eV, which can enhance the absorption of the catalyst in the visible light region and improve the photocatalytic degradation efficiency of oilfield wastewater.

Key words:  inorganic non-metallic materials      industrial catalysis      oilfield wastewater      plasma      titanium dioxide photocatalysis     
Received:  13 January 2023     
ZTFLH:  O649.4  
Fund: National Key Research and Development Program of China(2019YFA0708302)
Corresponding Authors:  ZHOU Lichen, Tel: 13413680165, E-mail: zhoulichen558@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.097     OR     https://www.cjmr.org/EN/Y2024/V38/I2/141

Preparation methodF sourceMaterialDegradation objectDegradation rate
Sol gel methodNH4FF-TiO2[31]Methyl orange91.12%
Sol gel methodHFN,F-TiO2[32]Acid red B100%
Steam heating methodHFCu/F-TiO2[33]Cationic blue99.8%
Sol gel methodNH4FF0.2-TiO2[34]Methyl orange97%
Precipitation-sol-hydrothermal crystallization methodNH4FF-TiO2[35]Rhodamine B83%
Photothermal methodHFF-TiO2[36]--
Sol gel methodNH4FN/F-TiO2[37]--
Sol gel methodNH4FF-TO2@MAC [38]X-3B99.8%
Sol gel methodNH4FN, F-TiO2[39]C8H14ClN586%
Table 1  Research status of F modified titanium dioxide
Fig.1  Preparation process of TiO2 catalyst
Fig.2  Preparation process of plasma F modified TiO2 catalyst
Fig.3  XRD spectrum of TiO2 catalyst
Fig.4  SEM diagram of DBD-F-TiO2 catalyst (a), TEM diagram of DBD-F-TiO2 catalyst (b), HRTEM and electron diffraction pattern diagram (c) of DBD-F-TiO2 catalyst
Fig.5  XPS spectrum of catalyst (a) full spectrum of DBD-F-TiO2 and TiO2, (b) F 1s high-resolution spectrum of DBD-F-TiO2 catalyst, (c) Ti 2p high-resolution spectrum of DBD-F-TiO2 catalyst, (d) O 1s high-resolution spectrum of DBD-F-TiO2 catalyst, (e) C 1s high resolution spectrum of DBD-F-TiO2 catalyst
Fig.6  FT-IR spectrum of DBD-F-TiO2 and TiO2
Fig.7  UV vis spectrogram of DBD-F-TiO2 and TiO2 (a) and relationship between (αhv)1/2 and (hv) (b)
Fig.8  Fluorescence Spectrum of DBD-F-TiO2 and TiO2
Fig.9  Photocatalytic performance of materials (a) degradation rate of methylene blue solution by catalyst, (b) COD removal rate of oilfield waste-water by DBD-F-TiO2 and TiO2 systems
Fig.10  Effect of catalyst dosage on COD removal rate of oilfield wastewater
Fig.11  Effect of pH value on COD removal rate of oilfield wastewater
Fig.12  Effect of anion types on COD removal rate of oilfield wastewater
Fig.13  Catalystreuseperformance (a), F1s high resolut-ion spectrum (b) of 0.3F-Ti/3 and 0.3F-Ti/5 catalysts
Fig.14  Radical capture experiment (a) and photoca-talytic mechanism diagram (b)
1 Huang Y, Yu G Y. Study and application on high effective treatment technology of operation wastewater in oilfield [J]. Chem. Eng. Oil Gas, 2020, 49(3): 138
黄 勇, 于冠宇. 高效处理油田作业废水技术的研究及应用 [J]. 石油与天然气化工, 2020, 49(3): 138
2 Dong Z Y, Lu M, Huang W H, et al. Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier [J]. J. Hazard. Mater., 2011, 196: 123
doi: 10.1016/j.jhazmat.2011.09.001 pmid: 21925792
3 Leshuk T, Wong T, Linley S, et al. Solar photocatalytic degradation of naphthenic acids in oil sands process-affected water [J]. Chemosphere, 2016, 144: 1854
doi: 10.1016/j.chemosphere.2015.10.073 pmid: 26539710
4 King S M, Leaf P A, Olson A C, et al. Photolytic and photocatalytic degradation of surface oil from the Deepwater Horizon spill [J]. Chemosphere, 2014, 95: 415
doi: 10.1016/j.chemosphere.2013.09.060 pmid: 24139429
5 Ye L Q, Jin X L, Liu C, et al. Thickness-ultrathin and bismuth-rich strategies for BiOBr to enhance photoreduction of CO2 into solar fuels [J]. Appl. Catal., 2016, 187B: 281
6 Wang S H, Yang M, Zhang Y, et al. Detection of left-sided and right-sided hearing loss via fractional Fourier transform [J]. Entropy, 2016, 18(5): 194
doi: 10.3390/e18050194
7 Gnayem H, Sasson Y. nanostructuredHierarchical 3D flowerlike BiOCl x Br1 - x semiconductors with exceptional visible light photocatalytic activity [J]. ACS Catal., 2013, 3(2): 186
doi: 10.1021/cs3005133
8 Henríquez A, Mansilla H D, Martínez-de la Cruz A M, et al. Selective oxofunctionalization of cyclohexane over titanium dioxide-based and bismuth oxyhalide (BiO X, X = Cl-, Br-, I-) photocatalysts by visible light irradiation [J]. Appl. Catal., 2017, 206B: 252
9 Cui Z G, Li H, Wang Z T. The progress of the wastewater treatment by micro-electrolysis technology [J]. Shandong Chem. Ind., 2009, 38(4): 21
崔志刚, 李 浩, 王宗廷. 微电解法处理废水研究进展 [J]. 山东化工, 2009, 38(4): 21
10 Li S F, Huang Y L, Zhou M. Research status and prospect of film separation technology for oilfield wastewater treatment [J]. Chem. Eng., 2022, 36(7): 63
李仕芳, 黄治梁, 周 密. 膜分离技术处理油田废水研究现状及展望 [J]. 化学工程师, 2022, 36(7): 63
11 Han B L, Li J L, Zhou C H, et al. Research on a honeycombed micro-electrolysis reactor based on flow improvement and its application in oil field wastewater treatment [J]. Chem. Eng. Oil Gas, 2018, 47(5): 100
韩本利, 李甲亮, 周春海 等. 基于流态改进的仓式微电解反应器处理油田废水研究 [J]. 石油与天然气化工, 2018, 47(5): 100
12 Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37
doi: 10.1038/238037a0
13 Wang Y C, Liu X Y, Wang X X, et al. Metal-organic frameworks based photocatalysts: architecture strategies for efficient solar energy conversion [J]. Chem. Eng. J., 2021, 419: 129459
doi: 10.1016/j.cej.2021.129459
14 Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications [J]. Angew. Chem. Int. Ed., 2011, 50(13): 2904
doi: 10.1002/anie.v50.13
15 Ohno T, Akiyoshi M, Umebayashi T, et al. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light [J]. Appl. Catal., 2004, 265A(1) : 115
16 Li J X. Study on the treatment of organic compounds in oilfield wastewater by Cu2+/ZnO/TiO2 composite photocatalyst [D]. Xi'an: Northwest University, 2020
李佳星. Cu2+/ZnO/TiO2复合光催化剂处理油田废水中有机物研究 [D]. 西安: 西北大学, 2020
17 Wang W, Liu J C, Huo W C, et al. Adsorption-photocatalytic degradation of oilfield wastewater by C-doped diatomite@TiO2 catalyst [J]. Mater. Rep., 2020, 34(23): 23027
王 薇, 刘竟成, 霍旺晨 等. C掺杂纳米硅藻土@TiO2催化剂吸附-光催化降解油田废水 [J]. 材料导报, 2020, 34(23): 23027
18 Jiao Y R, Liu D, Qiao Y X, et al. Preparation and application of TiO2/MoS2 photocatalyst in oilfield wastewater treatment [J]. Sci. Technol. Chem. Ind., 2020, 28(6): 13
焦玉荣, 刘 丹, 乔赟轩 等. 复合材料TiO2/MoS2的制备及对油田废水处理 [J]. 化工科技, 2020, 28(6): 13
19 Chen Y L, Wang L J, Wang W Z, et al. Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2 - x Se core-shell nanowire arrays fabricated by ion-replacement method [J]. Appl. Catal. B, 2017, 209B: 110
20 Chai Y C, Lin L, Zhao B, et al. Recent progress on rare earth elements doped nano-titanium dioxide photocatalysts [J]. Mater. Rep., 2013, 27(1): 38
柴瑜超, 林 琳, 赵 斌 等. 稀土掺杂二氧化钛光催化剂的研究进展 [J]. 材料导报, 2013, 27(1): 38
21 Zhang J L, Zhao W J, Chen H J, et al. Study of loaded photocatalysts by precious metals on the photocatalytic reactivity [J]. Acta Phys. Chim. Sin., 2004, 20(4): 424
doi: 10.3866/PKU.WHXB20040420
张金龙, 赵文娟, 陈海军 等. 负载贵金属光催化剂的光催化活性研究 [J]. 物理化学学报, 2004, 20(4): 424
22 Peng Z T, Gao Y R, Yao C, et al. Preparation and photocatalytic activity of Fe/Yb co-doped titanium dioxide hollow sphere [J]. Chin. J. Mater. Res., 2021, 35(2): 135
doi: 10.11901/1005.3093.2020.333
彭子童, 郜艳荣, 姚 楚 等. 铁/镱掺杂二氧化钛空心球的制备及其光催化性能 [J]. 材料研究学报, 2021, 35(2): 135
doi: 10.11901/1005.3093.2020.333
23 Ren T Q, Zhang B, Sun Y, et al. Preparation of TiO2/ZnO composite photocatalyst and its photocatalytic performance [J]. Speciality Petrochemicals, 2015, 32(5): 1
任铁强, 张 冰, 孙 悦 等. TiO2/ZnO复合光催化剂的制备及其光催化性能研究 [J]. 精细石油化工, 2015, 32(5): 1
24 Park J S, Choi W. Enhanced remote photocatalytic oxidation on surface-fluorinated TiO2 [J]. Langmuir, 2004, 20(26): 11523
pmid: 15595779
25 Matouk Z, Torriss B, Rincón R, et al. Functionalization of cellulose nanocrystal films using Non-Thermal atmospheric -Pressure plasmas [J]. Appl. Surf. Sci., 2020, 511: 145566
doi: 10.1016/j.apsusc.2020.145566
26 Jia C X, Wang Q, Chen P, et al. Surface adhesive properties of continuous PBO fiber after air-plasma-grafting-epoxy treatment [J]. J. Cent. South Univ., 2016, 23(9): 2165
doi: 10.1007/s11771-016-3273-z
27 Meng X M, Ma Z, Ma G Q, et al. Preparation and rheological study of pentaerythritol triacrylate grafted onto polypropylene induced by air plasma [J]. J. Appl. Polym. Sci., 2019, 136(42): 48054
doi: 10.1002/app.v136.42
28 Di L B, Xu Z J, Wang K, et al. A facile method for preparing Pt/TiO2 photocatalyst with enhanced activity using dielectric barrier discharge [J]. Catal. Today, 2013, 211: 109
doi: 10.1016/j.cattod.2013.03.025
29 Wang J, Sun Y B, Feng J W, et al. Degradation of triclocarban in water by dielectric barrier discharge plasma combined with TiO2/activated carbon fibers: effect of operating parameters and byproducts identification [J]. Chem. Eng. J., 2016, 300: 36
doi: 10.1016/j.cej.2016.04.041
30 Seo H K, Elliott C M, Shin H S. Mesoporous TiO2 films fabricated using atmospheric pressure dielectric barrier discharge jet [J]. ACS Appl. Mater. Interfaces, 2010, 2(12): 3397
doi: 10.1021/am100731w
31 Zhang L Y, Tu Q M, You Y H, et al. Preparation of F- doped TiO2 and its photocatalytic degradation performance on methyl orange [J]. J. Synth. Cryst., 2018, 47(11): 2408
张理元, 涂秋梅, 由耀辉 等. F-掺杂TiO2制备及光降解甲基橙性能研究 [J]. 人工晶体学报, 2018, 47(11): 2408
32 Wang L T, Li F Y, Zhang Z H, et al. Preparation of N, F-codoped TiO2 and its photocatalytic activity under visible light [J]. Acta Sci. Circumst., 2013, 33(3): 742
王丽涛, 李芳轶, 张朝红 等. 氮氟掺杂二氧化钛(N,F-TiO2)的制备及可见光催化活性的研究 [J]. 环境科学学报, 2013, 33(3): 742
33 Chen Z Y, Chen Y B, Li Q, et al. Preparation of fluorine and copper co-doping TiO2 hollow microspheres and its visible light photocatalytic performance [J]. Chin. J. Nonferrous Met., 2017, 27(8): 1643
陈赞宇, 陈艳波, 李 强 等. 氟铜共掺杂TiO2空心微球的制备及可见光催化性能 [J]. 中国有色金属学报, 2017, 27(8): 1643
34 Wang H X, Li X X, Tang L, et al. Preparation and photocatalytic property of f-modified TiO2 [J]. J. Synth. Cryst., 2019, 48(6): 1072
王红侠, 李新星, 汤 亮 等. 氟改性TiO2的制备及光催化性能研究 [J]. 人工晶体学报, 2019, 48(6): 1072
35 Huang D G, Liao S J, Dang Z. Preparation, characterization and photocatalytic performance of anatase F doped TiO2 sol [J]. Acta Chim. Sin., 2006, 64(17): 1805
黄冬根, 廖世军, 党 志. 氟掺杂锐钛矿型TiO2溶胶的制备、表征及催化性能 [J]. 化学学报, 2006, 64(17): 1805
36 Qin H, Lin W, Zhang Z C, et al. Synthesis of F-TiO2 nanosheets and its photocatalytic oxidation of benzene to phenol [J]. Adv. Mater. Res., 2013, 750-752: 1160
37 Shabalina A, Fakhrutdinova E, Chen Y W, et al. Preparation of gold-modified F,N-TiO2 visible light photocatalysts and their structural features comparative analysis [J]. J. Sol-Gel Sci. Technol., 2015, 75(3): 617
doi: 10.1007/s10971-015-3732-2
38 Lin X X, Ji X, Fu D G, et al. Photocatalytic properties of magnetic activated carbon supported F-doped TiO2 [J]. J. Inorg. Mater., 2013, 28(9): 997
doi: 10.3724/SP.J.1077.2013.12671
林晓霞, 吉 翔, 付德刚 等. 磁性活性碳负载F掺杂纳米二氧化钛的光催化性质研究 [J]. 无机材料学报, 2013, 28(9): 997
39 Samsudin E M, Abd Hamid S B, Juan J C, et al. Enhancement of the intrinsic photocatalytic activity of TiO2 in the degradation of 1,3,5-triazine herbicides by doping with N,F [J]. Chem. Eng. J., 2015, 280: 330
doi: 10.1016/j.cej.2015.05.125
40 Lang J H, Takahashi K, Kubo M, et al. Ag-doped TiO2 composite films prepared using aerosol-assisted, plasma-enhanced chemical vapor deposition [J]. Catalysts, 2022, 12(4): 365
doi: 10.3390/catal12040365
41 Hou C T, Kong X H. Preparation and characterization of TiO2-TiOF2 photocatalyst [J]. Environ. Prot. Chem. Ind., 2022, 42(2): 203
侯晨涛, 孔祥辉. TiO2-TiOF2光催化剂的制备及其性能表征 [J]. 化工环保, 2022, 42(2): 203
doi: 10.3969/j.issn.1006-1878.2022.02.013
42 Su Q Z, Han Q Z, Gao J H, et al. Modification of the photocatalytic properties of anatase TiO2 (101) surface by doping transition metals [J]. Acta Phys. Sin., 2017, 66(6): 067101
苏巧智, 韩清珍, 高锦花 等. 过渡金属掺杂锐钛矿TiO2(101)表面的改性 [J]. 物理学报, 2017, 66(6): 067101
43 Wu H M, Ma J Z, Li Y B, et al. Photocatalytic oxidation of gaseous ammonia over fluorinated TiO2 with exposed (001) facets [J]. Appl. Catal., 2014, 152-153B: 82
44 Song M G, Wang Y S, Guo Y, et al. Catalytic wet oxidation of aniline over Ru catalysts supported on a modified TiO2 [J]. Chin. J. Catal., 2017, 38(7): 1155
doi: 10.1016/S1872-2067(17)62848-1
宋明光, 王筠松, 郭 耘 等. 改性二氧化钛负载贵金属Ru催化剂催化降解苯胺溶液 [J]. 催化学报, 2017, 38(7): 1155
doi: 10.1016/S1872-2067(17)62848-1
45 Qi K Z, Liu S Y, Qiu M. Photocatalytic performance of TiO2 nanocrystals with/without oxygen defects [J]. Chin. J. Catal., 2018, 39(4): 867
doi: 10.1016/S1872-2067(17)62999-1
戚克振, 刘书源, 仇 萌. 无缺陷和氧缺陷二氧化钛的光催化活性 (英文) [J]. 催化学报, 2018, 39(4): 867
doi: 10.1016/S1872-2067(17)62999-1
46 Wang Q J, Cui Y, Huang R J, et al. A heterogeneous Fenton reaction system of N-doped TiO2 anchored on sepiolite activates peroxymonosulfate under visible light irradiation [J]. Chem. Eng. J., 2020, 383: 123142
doi: 10.1016/j.cej.2019.123142
47 Huang D G, Liao S J, Quan S Q, et al. Synthesis and characterization of visible light responsive N-TiO2 mixed crystal by a modified hydrothermal process [J]. J. Non-Cryst. Solids, 2008, 354(33): 3965
doi: 10.1016/j.jnoncrysol.2008.05.026
48 Iihoshi T, Ohwaki T, Vequizo J J M, et al. Improvement of photocatalytic activity under visible-light irradiation by heterojunction of Cu ion loaded WO3 and Cu ion loaded N-TiO2 [J]. Appl. Catal., 2019, 248B: 249
49 He Y G, Yan Q, Liu X F, et al. Effect of annealing on the structure, morphology and photocatalytic activity of surface-fluorinated TiO2 with dominant {001} facets [J]. J. Photochem. Photobiol., 2020, 393A: 112400
50 Biswas A, Chakraborty A, Jana N R. Nitrogen and fluorine codoped, colloidal TiO2 nanoparticle: tunable doping, large red-shifted band edge, visible light induced photocatalysis, and cell death [J]. ACS Appl. Mater. Interfaces, 2018, 10(2): 1976
doi: 10.1021/acsami.7b14025
51 Zhang P H, Li Y C, Liu D, et al. Photocatalytic activity of TiO2 photocatalyst Co-doped with indium and X(X = B, Ce) [J]. J. Funct. Mater., 2022, 53(6): 6112
张鹏会, 李艳春, 刘 东 等. In, X(X = B, Ce)共掺杂TiO2光催化活性研究 [J]. 功能材料, 2022, 53(6): 6112
doi: 10.3969/j.issn.1001-9731.2022.06.016
52 Wang L P, Meng Y F, Zhao L Z. Photocatalytic oxidation degradation study for operation wastewater treatment in oil field [J]. Chem. Eng. Oil Gas, 2004, 33(4): 290
万里平, 孟英峰, 赵立志. 油田作业废水光催化氧化降解研究 [J]. 石油与天然气化工, 2004, 33(4): 290
53 Zhao H, Liu X, Cao Z, et al. Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes [J]. J. Hazard. Mater., 2016, 310: 235
doi: 10.1016/j.jhazmat.2016.02.045 pmid: 26937870
54 Tsitonaki A, Petri B, Crimi M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review [J]. Crit. Rev. Environ. Sci. Technol., 2010, 40(1): 55
doi: 10.1080/10643380802039303
[1] LI Bosen, LIAO Zhongxin, GAO Daqiang. Effect of BNZ Component on Structure and Property of KNN Based Lead-free Piezoelectric Ceramics[J]. 材料研究学报, 2024, 38(1): 51-60.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[7] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[8] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[9] LI Pengyu, LIU Zitong, KANG Shumei, CHEN Shanshan. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy[J]. 材料研究学报, 2023, 37(4): 271-280.
[10] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[11] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[12] DONG Zhexuan, CHEN Ping, LIU Xingda. Effect of Plasma Treatment on Interfacial Properties of CF/PI Composites at Elevated Temperatures[J]. 材料研究学报, 2023, 37(12): 900-906.
[13] WANG Sheng, ZHOU Qiaoting, ZHAN Huimin, CHEN Jingjing. Atomic Analysis of Contact-induced Subsurface Damage Behavior of Single Crystal SiC Based on Molecular Simulation[J]. 材料研究学报, 2023, 37(12): 943-951.
[14] WANG Yue, FU Boyan, CHEN Shuanglong, ZOU Binglin, WANG Chunjie. Thermophysical Properties of Ln2(Zr0.7Ce0.3)2O7 (Ln=La, Nd, Sm, Gd) Nanomaterials for Thermal Barrier Coatings[J]. 材料研究学报, 2023, 37(11): 855-861.
[15] SUN Yuwei, CHEN Chou, QI Xin, REN Chuqi, TANG Qian, TENG Honghui, REN Baixiang. Synthesis of Z-scheme Ag3PO4/MIL-125(Ti) Heterojunction and Its Performance in Photocatalytic Reduction of Cr(VI)[J]. 材料研究学报, 2023, 37(11): 871-880.
No Suggested Reading articles found!